These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20866932)

  • 21. Discrete rational and breather solution in the spatial discrete complex modified Korteweg-de Vries equation and continuous counterparts.
    Zhao HQ; Yu GF
    Chaos; 2017 Apr; 27(4):043113. PubMed ID: 28456174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable optical rogue waves in the femtosecond regime.
    Dai CQ; Zhou GQ; Zhang JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016603. PubMed ID: 22400691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Infinite hierarchy of nonlinear Schrödinger equations and their solutions.
    Ankiewicz A; Kedziora DJ; Chowdury A; Bandelow U; Akhmediev N
    Phys Rev E; 2016 Jan; 93(1):012206. PubMed ID: 26871072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions.
    Guo B; Ling L; Liu QP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026607. PubMed ID: 22463349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rogue waves and rational solutions of the nonlinear Schrödinger equation.
    Akhmediev N; Ankiewicz A; Soto-Crespo JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026601. PubMed ID: 19792266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations.
    Vitanov NK
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shallow-water rogue waves: An approach based on complex solutions of the Korteweg-de Vries equation.
    Ankiewicz A; Bokaeeyan M; Akhmediev N
    Phys Rev E; 2019 May; 99(5-1):050201. PubMed ID: 31212487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions.
    Chowdury A; Kedziora DJ; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022919. PubMed ID: 25768581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional rogue waves in nonstationary parabolic potentials.
    Yan Z; Konotop VV; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036610. PubMed ID: 21230206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.
    Slunyaev A; Pelinovsky E; Sergeeva A; Chabchoub A; Hoffmann N; Onorato M; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012909. PubMed ID: 23944540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions.
    Yang B; Chen Y
    Chaos; 2018 May; 28(5):053104. PubMed ID: 29857682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymptotic solitons for a higher-order modified Korteweg-de Vries equation.
    Marchant TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046623. PubMed ID: 12443365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Propagation of solitons in a randomly perturbed Ablowitz-Ladik chain.
    Garnier J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026608. PubMed ID: 11308602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods.
    Vitanov NK; Dimitrova ZI; Vitanov KN
    Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33374871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonintegrable Schrodinger discrete breathers.
    Gómez-Gardeñes J; Floría LM; Peyrard M; Bishop AR
    Chaos; 2004 Dec; 14(4):1130-47. PubMed ID: 15568927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial structure of the non-integrable discrete defocusing Hirota equation.
    Ma L; Fang M; Song H; Zhou J
    Chaos; 2023 Aug; 33(8):. PubMed ID: 37549119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solutions of the higher-order Manakov-type continuous and discrete equations.
    Chowdury A; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012902. PubMed ID: 25122355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonintegrable spatial discrete nonlocal nonlinear schrödinger equation.
    Ji JL; Xu ZW; Zhu ZN
    Chaos; 2019 Oct; 29(10):103129. PubMed ID: 31675833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inverse scattering transform for the complex reverse space-time nonlocal modified Korteweg-de Vries equation with nonzero boundary conditions and constant phase shift.
    Luo XD
    Chaos; 2019 Jul; 29(7):073118. PubMed ID: 31370415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.