These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20866986)

  • 1. Phonon-mediated versus coulombic backaction in quantum dot circuits.
    Harbusch D; Taubert D; Tranitz HP; Wegscheider W; Ludwig S
    Phys Rev Lett; 2010 May; 104(19):196801. PubMed ID: 20866986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inelastic backaction due to quantum point contact charge fluctuations.
    Young CE; Clerk AA
    Phys Rev Lett; 2010 May; 104(18):186803. PubMed ID: 20482197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon-mediated back-action of a charge readout on a double quantum dot.
    Gasser U; Gustavsson S; Küng B; Ensslin K; Ihn T
    Nanotechnology; 2010 Jul; 21(27):274003. PubMed ID: 20571190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detector-induced backaction on the counting statistics of a double quantum dot.
    Li ZZ; Lam CH; Yu T; You JQ
    Sci Rep; 2013 Oct; 3():3026. PubMed ID: 24149587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laterally defined freely suspended quantum dots in GaAs/AlGaAs heterostructures.
    Rossler C; Bichler M; Schuh D; Wegscheider W; Ludwig S
    Nanotechnology; 2008 Apr; 19(16):165201. PubMed ID: 21825635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-dot quantum ratchet driven by an independently biased quantum point contact.
    Khrapai VS; Ludwig S; Kotthaus JP; Tranitz HP; Wegscheider W
    Phys Rev Lett; 2006 Oct; 97(17):176803. PubMed ID: 17155493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a quantum dot as a high-frequency shot noise detector.
    Onac E; Balestro F; van Beveren LH; Hartmann U; Nazarov YV; Kouwenhoven LP
    Phys Rev Lett; 2006 May; 96(17):176601. PubMed ID: 16712318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman phonon emission in a driven double quantum dot.
    Colless JI; Croot XG; Stace TM; Doherty AC; Barrett SD; Lu H; Gossard AC; Reilly DJ
    Nat Commun; 2014 Apr; 5():3716. PubMed ID: 24759675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gate-controlled electromechanical backaction induced by a quantum dot.
    Okazaki Y; Mahboob I; Onomitsu K; Sasaki S; Yamaguchi H
    Nat Commun; 2016 Apr; 7():11132. PubMed ID: 27063939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telegraph noise in coupled quantum dot circuits induced by a quantum point contact.
    Taubert D; Pioro-Ladrière M; Schröer D; Harbusch D; Sachrajda AS; Ludwig S
    Phys Rev Lett; 2008 May; 100(17):176805. PubMed ID: 18518321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counterflow of electrons in two isolated quantum point contacts.
    Khrapai VS; Ludwig S; Kotthaus JP; Tranitz HP; Wegscheider W
    Phys Rev Lett; 2007 Aug; 99(9):096803. PubMed ID: 17931027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-electron-phonon interaction in a suspended quantum dot phonon cavity.
    Weig EM; Blick RH; Brandes T; Kirschbaum J; Wegscheider W; Bichler M; Kotthaus JP
    Phys Rev Lett; 2004 Jan; 92(4):046804. PubMed ID: 14995394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions.
    Uskov AV; Jauho A; Tromborg B; Mork J; Lang R
    Phys Rev Lett; 2000 Aug; 85(7):1516-9. PubMed ID: 10970543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interdependence of ICD rates in paired quantum dots on geometry.
    Weber F; Aziz EF; Bande A
    J Comput Chem; 2017 Sep; 38(25):2141-2150. PubMed ID: 28568014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2.
    Song XX; Liu D; Mosallanejad V; You J; Han TY; Chen DT; Li HO; Cao G; Xiao M; Guo GC; Guo GP
    Nanoscale; 2015 Oct; 7(40):16867-73. PubMed ID: 26412019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible solution for charge sensing in vertical double quantum dots.
    Huang SM; Badrutdinov AO; Kono K; Ono K
    J Phys Condens Matter; 2013 Aug; 25(34):345301. PubMed ID: 23883871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-driven transitions in two coupled semiconductor charge qubits.
    Petersson KD; Smith CG; Anderson D; Atkinson P; Jones GA; Ritchie DA
    Phys Rev Lett; 2009 Jul; 103(1):016805. PubMed ID: 19659168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Exciton Generation in Semiconductor Quantum Dots.
    Beard MC
    J Phys Chem Lett; 2011 Jun; 2(11):1282-8. PubMed ID: 26295422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.