These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20867019)

  • 1. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus.
    Rellergert WG; DeMille D; Greco RR; Hehlen MP; Torgerson JR; Hudson ER
    Phys Rev Lett; 2010 May; 104(20):200802. PubMed ID: 20867019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wigner crystals of 229Th for optical excitation of the nuclear isomer.
    Campbell CJ; Radnaev AG; Kuzmich A
    Phys Rev Lett; 2011 Jun; 106(22):223001. PubMed ID: 21702597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency ratio of the
    Zhang C; Ooi T; Higgins JS; Doyle JF; von der Wense L; Beeks K; Leitner A; Kazakov GA; Li P; Thirolf PG; Schumm T; Ye J
    Nature; 2024 Sep; 633(8028):63-70. PubMed ID: 39232152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherence-enhanced optical determination of the 229Th isomeric transition.
    Liao WT; Das S; Keitel CH; Pálffy A
    Phys Rev Lett; 2012 Dec; 109(26):262502. PubMed ID: 23368553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proposed experimental method to determine alpha sensitivity of splitting between ground and 7.6 eV isomeric states in 229Th.
    Berengut JC; Dzuba VA; Flambaum VV; Porsev SG
    Phys Rev Lett; 2009 May; 102(21):210801. PubMed ID: 19519091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants.
    Godun RM; Nisbet-Jones PB; Jones JM; King SA; Johnson LA; Margolis HS; Szymaniec K; Lea SN; Bongs K; Gill P
    Phys Rev Lett; 2014 Nov; 113(21):210801. PubMed ID: 25479482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance.
    Fortier TM; Ashby N; Bergquist JC; Delaney MJ; Diddams SA; Heavner TP; Hollberg L; Itano WM; Jefferts SR; Kim K; Levi F; Lorini L; Oskay WH; Parker TE; Shirley J; Stalnaker JE
    Phys Rev Lett; 2007 Feb; 98(7):070801. PubMed ID: 17359009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms.
    Zhang SY; Wu JT; Zhang YL; Leng JX; Yang WP; Zhang ZG; Zhao JY
    Sci Rep; 2015 Oct; 5():15114. PubMed ID: 26459877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passion for precision.
    Hänsch TW
    Chemphyschem; 2006 Jun; 7(6):1170-87. PubMed ID: 16637090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastable laser with average fractional frequency drift rate below 5 × 10⁻¹⁹/s.
    Hagemann C; Grebing C; Lisdat C; Falke S; Legero T; Sterr U; Riehle F; Martin MJ; Ye J
    Opt Lett; 2014 Sep; 39(17):5102-5. PubMed ID: 25166084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th.
    Flambaum VV
    Phys Rev Lett; 2006 Sep; 97(9):092502. PubMed ID: 17026357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+.
    Porsev SG; Flambaum VV; Peik E; Tamm C
    Phys Rev Lett; 2010 Oct; 105(18):182501. PubMed ID: 21231100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks.
    Blatt S; Ludlow AD; Campbell GK; Thomsen JW; Zelevinsky T; Boyd MM; Ye J; Baillard X; Fouché M; Le Targat R; Brusch A; Lemonde P; Takamoto M; Hong FL; Katori H; Flambaum VV
    Phys Rev Lett; 2008 Apr; 100(14):140801. PubMed ID: 18518019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision test of mass-ratio variations with lattice-confined ultracold molecules.
    Zelevinsky T; Kotochigova S; Ye J
    Phys Rev Lett; 2008 Feb; 100(4):043201. PubMed ID: 18352267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy of the
    Seiferle B; von der Wense L; Bilous PV; Amersdorffer I; Lemell C; Libisch F; Stellmer S; Schumm T; Düllmann CE; Pálffy A; Thirolf PG
    Nature; 2019 Sep; 573(7773):243-246. PubMed ID: 31511684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency Comparison of Two (40)Ca(+) Optical Clocks with an Uncertainty at the 10(-17) Level.
    Huang Y; Guan H; Liu P; Bian W; Ma L; Liang K; Li T; Gao K
    Phys Rev Lett; 2016 Jan; 116(1):013001. PubMed ID: 26799015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty.
    Huntemann N; Sanner C; Lipphardt B; Tamm C; Peik E
    Phys Rev Lett; 2016 Feb; 116(6):063001. PubMed ID: 26918984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision Isotope Shift Measurements in Calcium Ions Using Quantum Logic Detection Schemes.
    Gebert F; Wan Y; Wolf F; Angstmann CN; Berengut JC; Schmidt PO
    Phys Rev Lett; 2015 Jul; 115(5):053003. PubMed ID: 26274418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.