These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20867069)

  • 1. Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency.
    Scully MO
    Phys Rev Lett; 2010 May; 104(20):207701. PubMed ID: 20867069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.
    Türkpençe D; Müstecaplıoğlu ÖE
    Phys Rev E; 2016 Jan; 93(1):012145. PubMed ID: 26871061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence.
    Dorfman KE; Xu D; Cao J
    Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delocalized quantum states enhance photocell efficiency.
    Zhang Y; Oh S; Alharbi FH; Engel GS; Kais S
    Phys Chem Chem Phys; 2015 Feb; 17(8):5743-50. PubMed ID: 25622523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic universality of quantum Carnot engines.
    Gardas B; Deffner S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042126. PubMed ID: 26565187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum afterburner: improving the efficiency of an ideal heat engine.
    Scully MO
    Phys Rev Lett; 2002 Feb; 88(5):050602. PubMed ID: 11863710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Photovoltaic Cells Driven by Photon Pulses.
    Oh S; Park JJ; Nha H
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of molecular photocells: Application to two-level photovoltaic system with electron-hole interaction.
    Nemati Aram T; Anghel-Vasilescu P; Asgari A; Ernzerhof M; Mayou D
    J Chem Phys; 2016 Sep; 145(12):124116. PubMed ID: 27782627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and optimization of a quantum analog of the Carnot cycle.
    Xiao G; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012118. PubMed ID: 26274135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimal model of a heat engine: information theory approach.
    Zhou Y; Segal D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011120. PubMed ID: 20866578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark states enhance the photocell power via phononic dissipation.
    Zhang Y; Wirthwein A; Alharbi FH; Engel GS; Kais S
    Phys Chem Chem Phys; 2016 Nov; 18(46):31845-31849. PubMed ID: 27841390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the superposition principle for enhancing the efficiency of the quantum-mechanical Carnot engine.
    Abe S; Okuyama S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011104. PubMed ID: 22400509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid microwave-cavity heat engine.
    Bergenfeldt C; Samuelsson P; Sothmann B; Flindt C; Büttiker M
    Phys Rev Lett; 2014 Feb; 112(7):076803. PubMed ID: 24579624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine.
    Dann R; Kosloff R; Salamon P
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic thermodynamics of open quantum systems.
    Brandner K; Seifert U
    Phys Rev E; 2016 Jun; 93(6):062134. PubMed ID: 27415235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.