These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20867071)

  • 1. Streaming instability in growing cell populations.
    Mather W; Mondragón-Palomino O; Danino T; Hasty J; Tsimring LS
    Phys Rev Lett; 2010 May; 104(20):208101. PubMed ID: 20867071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical ordering of dense cell populations.
    Volfson D; Cookson S; Hasty J; Tsimring LS
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15346-51. PubMed ID: 18832176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed trapping of individual bacteria using micrometre-size sieves.
    Kim MC; Isenberg BC; Sutin J; Meller A; Wong JY; Klapperich CM
    Lab Chip; 2011 Mar; 11(6):1089-95. PubMed ID: 21293825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using confined bacteria as building blocks to generate fluid flow.
    Gao Z; Li H; Chen X; Zhang HP
    Lab Chip; 2015 Dec; 15(24):4555-62. PubMed ID: 26496967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer based chemical delivery to multichannel capillary patterned cells.
    Lee SH; Heinz AJ; Choi SE; Park W; Kwon S
    Lab Chip; 2011 Feb; 11(4):605-8. PubMed ID: 21240397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Order, intermittency, and pressure fluctuations in a system of proliferating rods.
    Orozco-Fuentes S; Boyer D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012715. PubMed ID: 23944499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering particle trajectories in microfluidic flows using particle shape.
    Uspal WE; Burak Eral H; Doyle PS
    Nat Commun; 2013; 4():2666. PubMed ID: 24177694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buckling instability in ordered bacterial colonies.
    Boyer D; Mather W; Mondragón-Palomino O; Orozco-Fuentes S; Danino T; Hasty J; Tsimring LS
    Phys Biol; 2011 Apr; 8(2):026008. PubMed ID: 21358041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropillar arrays enabling single microbial cell encapsulation in hydrogels.
    Park KJ; Lee KG; Seok S; Choi BG; Lee MK; Park TJ; Park JY; Kim DH; Lee SJ
    Lab Chip; 2014 Jun; 14(11):1873-9. PubMed ID: 24706072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation.
    Binder D; Probst C; Grünberger A; Hilgers F; Loeschcke A; Jaeger KE; Kohlheyer D; Drepper T
    PLoS One; 2016; 11(8):e0160711. PubMed ID: 27525986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic perfusion cell culture system confined in 35 mm culture dish for standard biological laboratories.
    Kondo E; Wada K; Hosokawa K; Maeda M
    J Biosci Bioeng; 2014 Sep; 118(3):356-8. PubMed ID: 24694398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependent multiphase flows on centrifugal microfluidics.
    Pishbin E; Kazemzadeh A; Chimerad M; Asiaei S; Navidbakhsh M; Russom A
    Lab Chip; 2020 Feb; 20(3):514-524. PubMed ID: 31898702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate.
    Van Assche D; Reithuber E; Qiu W; Laurell T; Henriques-Normark B; Mellroth P; Ohlsson P; Augustsson P
    Sci Rep; 2020 Feb; 10(1):3670. PubMed ID: 32111864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture.
    Giulitti S; Magrofuoco E; Prevedello L; Elvassore N
    Lab Chip; 2013 Nov; 13(22):4430-41. PubMed ID: 24064704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture.
    Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H
    Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measure and characterization of the forces exerted by growing multicellular spheroids using microdevice arrays.
    Aoun L; Larnier S; Weiss P; Cazales M; Herbulot A; Ducommun B; Vieu C; Lobjois V
    PLoS One; 2019; 14(5):e0217227. PubMed ID: 31120960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices.
    Buchenauer A; Hofmann MC; Funke M; Büchs J; Mokwa W; Schnakenberg U
    Biosens Bioelectron; 2009 Jan; 24(5):1411-6. PubMed ID: 18929478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a microfluidic cell culture platform embedded with nanoscale features.
    Yang Y; Kulangara K; Sia J; Wang L; Leong KW
    Lab Chip; 2011 May; 11(9):1638-46. PubMed ID: 21442110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation of chromosome replication controls both division and replication cycles in
    Witz G; van Nimwegen E; Julou T
    Elife; 2019 Nov; 8():. PubMed ID: 31710292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.