BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20867208)

  • 1. Torsional network model: normal modes in torsion angle space better correlate with conformation changes in proteins.
    Mendez R; Bastolla U
    Phys Rev Lett; 2010 Jun; 104(22):228103. PubMed ID: 20867208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing conformation changes in proteins through the torsional elastic response.
    Dos Santos HG; Klett J; Méndez R; Bastolla U
    Biochim Biophys Acta; 2013 May; 1834(5):836-46. PubMed ID: 23429178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can Conformational Changes of Proteins Be Represented in Torsion Angle Space? A Study with Rescaled Ridge Regression.
    Bastolla U; Dehouck Y
    J Chem Inf Model; 2019 Nov; 59(11):4929-4941. PubMed ID: 31600071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal Normal Mode Analysis (iNMA) Applied to Protein Conformational Flexibility.
    Frezza E; Lavery R
    J Chem Theory Comput; 2015 Nov; 11(11):5503-12. PubMed ID: 26574338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why are large conformational changes well described by harmonic normal modes?
    Dehouck Y; Bastolla U
    Biophys J; 2021 Dec; 120(23):5343-5354. PubMed ID: 34710378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized torsion-angle normal modes reproduce conformational changes more accurately than cartesian modes.
    Bray JK; Weiss DR; Levitt M
    Biophys J; 2011 Dec; 101(12):2966-9. PubMed ID: 22208195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensorial elastic network model for protein dynamics: integration of the anisotropic network model with bond-bending and twist elasticities.
    Srivastava A; Halevi RB; Veksler A; Granek R
    Proteins; 2012 Dec; 80(12):2692-700. PubMed ID: 22847894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
    Chen J; Im W; Brooks CL
    J Comput Chem; 2005 Nov; 26(15):1565-78. PubMed ID: 16145655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging between normal mode analysis and elastic network models.
    Na H; Song G
    Proteins; 2014 Sep; 82(9):2157-68. PubMed ID: 24692201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between normal modes in the 20-200 cm-1 frequency range and localized torsion motions related to certain collective motions in proteins.
    Cao ZW; Chen X; Chen YZ
    J Mol Graph Model; 2003 Jan; 21(4):309-19. PubMed ID: 12479929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins.
    Mahajan S; Sanejouand YH
    Arch Biochem Biophys; 2015 Feb; 567():59-65. PubMed ID: 25562404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying essential pairwise interactions in elastic network model using the alpha shape theory.
    Xia F; Tong D; Yang L; Wang D; Hoi SC; Koehl P; Lu L
    J Comput Chem; 2014 Jun; 35(15):1111-21. PubMed ID: 24648309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ; Hunter CA
    J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein interactions and fluctuations in a proteomic network using an elastic network model.
    Demirel MC; Keskin O
    J Biomol Struct Dyn; 2005 Feb; 22(4):381-6. PubMed ID: 15588102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction.
    Zhang T; Faraggi E; Zhou Y
    Proteins; 2010 Dec; 78(16):3353-62. PubMed ID: 20818661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global ribosome motions revealed with elastic network model.
    Wang Y; Rader AJ; Bahar I; Jernigan RL
    J Struct Biol; 2004 Sep; 147(3):302-14. PubMed ID: 15450299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation?
    Clore GM; Schwieters CD
    J Am Chem Soc; 2004 Mar; 126(9):2923-38. PubMed ID: 14995210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of dynamical correlations within the myosin motor domain by the normal mode analysis of an elastic network model.
    Zheng W; Brooks B
    J Mol Biol; 2005 Feb; 346(3):745-59. PubMed ID: 15713460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.