BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 20867312)

  • 1. Key role of hydrodynamic interactions in colloidal gelation.
    Furukawa A; Tanaka H
    Phys Rev Lett; 2010 Jun; 104(24):245702. PubMed ID: 20867312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrodynamics of colloidal gelation.
    Varga Z; Wang G; Swan J
    Soft Matter; 2015 Dec; 11(46):9009-19. PubMed ID: 26406284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.
    Varga Z; Swan J
    Soft Matter; 2016 Sep; 12(36):7670-81. PubMed ID: 27550538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions.
    Laganapan AM; Mouas M; Videcoq A; Cerbelaud M; Bienia M; Bowen P; Ferrando R
    J Colloid Interface Sci; 2015 Nov; 458():241-6. PubMed ID: 26232284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: virial expansions and simulation.
    Kędzierski M; Wajnryb E
    J Chem Phys; 2011 Oct; 135(16):164104. PubMed ID: 22047225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Colloidal Gels at Multiple Length Scales: The Role of Hydrodynamics.
    Royall CP; Eggers J; Furukawa A; Tanaka H
    Phys Rev Lett; 2015 Jun; 114(25):258302. PubMed ID: 26197149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian dynamics study of gel-forming colloidal particles.
    Santos PH; Campanella OH; Carignano MA
    J Phys Chem B; 2010 Oct; 114(41):13052-8. PubMed ID: 20873800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields.
    Wysocki A; Löwen H
    J Phys Condens Matter; 2011 Jul; 23(28):284117. PubMed ID: 21709336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology and dynamics of colloidal superballs.
    Royer JR; Burton GL; Blair DL; Hudson SD
    Soft Matter; 2015 Jul; 11(28):5656-65. PubMed ID: 26078036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits to gelation in colloidal aggregation.
    Manley S; Cipelletti L; Trappe V; Bailey AE; Christianson RJ; Gasser U; Prasad V; Segre PN; Doherty MP; Sankaran S; Jankovsky AL; Shiley B; Bowen J; Eggers J; Kurta C; Lorik T; Weitz DA
    Phys Rev Lett; 2004 Sep; 93(10):108302. PubMed ID: 15447462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interactions induce anomalous diffusion under partial confinement.
    Bleibel J; Domínguez A; Günther F; Harting J; Oettel M
    Soft Matter; 2014 May; 10(17):2945-8. PubMed ID: 24647326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic stability criterion for colloidal gelation under gravity.
    de Graaf J; Torre KW; Poon WCK; Hermes M
    Phys Rev E; 2023 Mar; 107(3-1):034608. PubMed ID: 37072990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Inverse Squeezing Flow on the Self-Assembly of Oppositely Charged Colloidal Particles under Electric Field.
    Yuan J; Takae K; Tanaka H
    Phys Rev Lett; 2022 Dec; 129(24):248001. PubMed ID: 36563242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic interactions in active colloidal crystal microrheology.
    Weeber R; Harting J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):057302. PubMed ID: 23214913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic lubrication in colloidal gels.
    Torre KW; de Graaf J
    Soft Matter; 2023 Oct; 19(38):7388-7398. PubMed ID: 37740405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.