These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 20867312)

  • 21. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of hydrodynamics on cluster formation in colloid-polymer mixtures.
    Whitmer JK; Luijten E
    J Phys Chem B; 2011 Jun; 115(22):7294-300. PubMed ID: 21574557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gel barrier formation in unsaturated porous media.
    Kim M; Corapcioglu MY
    J Contam Hydrol; 2002 May; 56(1-2):75-98. PubMed ID: 12076024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlated diffusion of colloidal particles near a liquid-liquid interface.
    Zhang W; Chen S; Li N; Zhang JZ; Chen W
    PLoS One; 2014; 9(1):e85173. PubMed ID: 24465498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization and dynamical arrest of colloidal fluids in a disordered matrix of polydisperse obstacles.
    Elizondo-Aguilera LF; Medina-Noyola M
    J Chem Phys; 2015 Jun; 142(22):224901. PubMed ID: 26071725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer.
    Jäger S; Stark H; Klapp SH
    J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geometric capture and escape of a microswimmer colliding with an obstacle.
    Spagnolie SE; Moreno-Flores GR; Bartolo D; Lauga E
    Soft Matter; 2015 May; 11(17):3396-411. PubMed ID: 25800455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamically Controlled Self-Organization in Mixtures of Active and Passive Colloids.
    Madden IP; Wang L; Simmchen J; Luijten E
    Small; 2022 May; 18(21):e2107023. PubMed ID: 35304973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.
    Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V
    J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pair diffusion, hydrodynamic interactions, and available volume in dense fluids.
    Mittal J; Hummer G
    J Chem Phys; 2012 Jul; 137(3):034110. PubMed ID: 22830686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.
    Howard MP; Panagiotopoulos AZ; Nikoubashman A
    J Chem Phys; 2015 Jun; 142(22):224908. PubMed ID: 26071732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Syneresis of Colloidal Gels: Endogenous Stress and Interfacial Mobility Drive Compaction.
    Wu Q; van der Gucht J; Kodger TE
    Phys Rev Lett; 2020 Nov; 125(20):208004. PubMed ID: 33258652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.
    Goddard BD; Nold A; Savva N; Yatsyshin P; Kalliadasis S
    J Phys Condens Matter; 2013 Jan; 25(3):035101. PubMed ID: 23220969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colloidal diffusion inside a spherical cell.
    Cervantes-Martínez AE; Ramírez-Saito A; Armenta-Calderón R; Ojeda-López MA; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):030402. PubMed ID: 21517444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface heterogeneity affects percolation and gelation of colloids: dynamic simulations with random patchy spheres.
    Wang G; Swan JW
    Soft Matter; 2019 Jun; 15(25):5094-5108. PubMed ID: 31184670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.