These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20867318)

  • 1. Dynamical vertex approximation for nanoscopic systems.
    Valli A; Sangiovanni G; Gunnarsson O; Toschi A; Held K
    Phys Rev Lett; 2010 Jun; 104(24):246402. PubMed ID: 20867318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of the one-crossing approximation in describing the Mott transition.
    Vildosola V; Pourovskii LV; Manuel LO; Roura-Bas P
    J Phys Condens Matter; 2015 Dec; 27(48):485602. PubMed ID: 26565588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial correlations and the insulating phase of the high-T(c) cuprates: insights from a configuration-interaction-based solver for dynamical mean field theory.
    Go A; Millis AJ
    Phys Rev Lett; 2015 Jan; 114(1):016402. PubMed ID: 25615484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent precursors of the Mott-Hubbard transition at the two-particle level.
    Schäfer T; Rohringer G; Gunnarsson O; Ciuchi S; Sangiovanni G; Toschi A
    Phys Rev Lett; 2013 Jun; 110(24):246405. PubMed ID: 25165946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral properties of correlated materials: local vertex and nonlocal two-particle correlations from combined GW and dynamical mean field theory.
    Ayral T; Werner P; Biermann S
    Phys Rev Lett; 2012 Nov; 109(22):226401. PubMed ID: 23368137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.
    Kutepov AL
    J Phys Condens Matter; 2015 Aug; 27(31):315603. PubMed ID: 26199232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent density-functional theory meets dynamical mean-field theory: real-time dynamics for the 3D Hubbard model.
    Karlsson D; Privitera A; Verdozzi C
    Phys Rev Lett; 2011 Mar; 106(11):116401. PubMed ID: 21469884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of magnetic exchange interactions in Mott-Hubbard systems.
    Wan X; Yin Q; Savrasov SY
    Phys Rev Lett; 2006 Dec; 97(26):266403. PubMed ID: 17280438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mott-hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study.
    Held K; Keller G; Eyert V; Vollhardt D; Anisimov VI
    Phys Rev Lett; 2001 Jun; 86(23):5345-8. PubMed ID: 11384494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster dynamical mean field theory of the Mott transition.
    Park H; Haule K; Kotliar G
    Phys Rev Lett; 2008 Oct; 101(18):186403. PubMed ID: 18999845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective orbital reconstruction in tetragonal FeS: A density functional dynamical mean-field theory study.
    Craco L; Leoni S
    Sci Rep; 2017 Apr; 7():46439. PubMed ID: 28418042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale dynamical mean-field theory for molecules and mesoscopic devices in the strong-correlation regime.
    Florens S
    Phys Rev Lett; 2007 Jul; 99(4):046402. PubMed ID: 17678380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast multi-orbital equation of motion impurity solver for dynamical mean field theory.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2011 Oct; 23(42):425601. PubMed ID: 21970899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of particle-hole asymmetry on the Mott-Hubbard metal-insulator transition.
    Demchenko DO; Joura AV; Freericks JK
    Phys Rev Lett; 2004 May; 92(21):216401. PubMed ID: 15245299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filling of the mott-hubbard gap in the high temperature photoemission spectrum of (V0.972Cr0.028)2O3.
    Mo SK; Kim HD; Allen JW; Gweon GH; Denlinger JD; Park JH; Sekiyama A; Yamasaki A; Suga S; Metcalf P; Held K
    Phys Rev Lett; 2004 Aug; 93(7):076404. PubMed ID: 15324257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory.
    Biermann S; Aryasetiawan F; Georges A
    Phys Rev Lett; 2003 Feb; 90(8):086402. PubMed ID: 12633445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of spin liquid in nonfrustrated correlated systems.
    Hassan SR; Sénéchal D
    Phys Rev Lett; 2013 Mar; 110(9):096402. PubMed ID: 23496730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type.
    Yamasaki A; Feldbacher M; Yang YF; Andersen OK; Held K
    Phys Rev Lett; 2006 Apr; 96(16):166401. PubMed ID: 16712252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical mean field theory-based electronic structure calculations for correlated materials.
    Biermann S
    Top Curr Chem; 2014; 347():303-45. PubMed ID: 24842620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.