These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 20867322)

  • 1. Correlated electrons in optically tunable quantum dots: building an electron dimer molecule.
    Singha A; Pellegrini V; Pinczuk A; Pfeiffer LN; West KW; Rontani M
    Phys Rev Lett; 2010 Jun; 104(24):246802. PubMed ID: 20867322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of correlation in spin excitations of few-electron quantum dots.
    García CP; Pellegrini V; Pinczuk A; Rontani M; Goldoni G; Molinari E; Dennis BS; Pfeiffer LN; West KW
    Phys Rev Lett; 2005 Dec; 95(26):266806. PubMed ID: 16486387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kondo effect in an integer-spin quantum dot.
    Sasaki S; De Franceschi S ; Elzerman JM; van der Wiel WG ; Eto M; Tarucha S; Kouwenhoven LP
    Nature; 2000 Jun; 405(6788):764-7. PubMed ID: 10866190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy of few-electron collective excitations in charge-tunable artificial atoms.
    Brocke T; Bootsmann MT; Tews M; Wunsch B; Pfannkuche D; Heyn Ch; Hansen W; Heitmann D; Schüller C
    Phys Rev Lett; 2003 Dec; 91(25):257401. PubMed ID: 14754154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant Raman transitions into singlet and triplet states in InGaAs quantum dots containing two electrons.
    Köppen T; Franz D; Schramm A; Heyn Ch; Heitmann D; Kipp T
    Phys Rev Lett; 2009 Jul; 103(3):037402. PubMed ID: 19659315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions.
    Florens S; Freyn A; Roch N; Wernsdorfer W; Balestro F; Roura-Bas P; Aligia AA
    J Phys Condens Matter; 2011 Jun; 23(24):243202. PubMed ID: 21625035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-selective Aharonov-Bohm oscillations in a lateral triple quantum dot.
    Delgado F; Shim YP; Korkusinski M; Gaudreau L; Studenikin SA; Sachrajda AS; Hawrylak P
    Phys Rev Lett; 2008 Nov; 101(22):226810. PubMed ID: 19113511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical amplification using raman transitions between spin-singlet and spin-triplet states of a pair of coupled in-GaAs quantum dots.
    Elzerman JM; Weiss KM; Miguel-Sanchez J; Imamoglu A
    Phys Rev Lett; 2011 Jul; 107(1):017401. PubMed ID: 21797571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio study of low-lying triplet states of the lithium dimer.
    Minaev B
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):790-9. PubMed ID: 16099708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron spin separation without magnetic field.
    Pawłowski J; Szumniak P; Skubis A; Bednarek S
    J Phys Condens Matter; 2014 Aug; 26(34):345302. PubMed ID: 25106038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity.
    Vora PM; Bracker AS; Carter SG; Sweeney TM; Kim M; Kim CS; Yang L; Brereton PG; Economou SE; Gammon D
    Nat Commun; 2015 Jul; 6():7665. PubMed ID: 26184654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pairing of spin excitations in lateral quantum dots.
    Korkusiński M; Hawrylak P; Ciorga M; Pioro-Ladrière M; Sachrajda AS
    Phys Rev Lett; 2004 Nov; 93(20):206806. PubMed ID: 15600956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot.
    Fasth C; Fuhrer A; Samuelson L; Golovach VN; Loss D
    Phys Rev Lett; 2007 Jun; 98(26):266801. PubMed ID: 17678116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers.
    Ghosh S; Wang WH; Mendoza FM; Myers RC; Li X; Samarth N; Gossard AC; Awschalom DD
    Nat Mater; 2006 Apr; 5(4):261-4. PubMed ID: 16565713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct quantitative electrical measurement of many-body interactions in exciton complexes in InAs quantum dots.
    Labud PA; Ludwig A; Wieck AD; Bester G; Reuter D
    Phys Rev Lett; 2014 Jan; 112(4):046803. PubMed ID: 24580478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot.
    Kim ED; Truex K; Xu X; Sun B; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2010 Apr; 104(16):167401. PubMed ID: 20482081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically probing spin and charge interactions in a tunable artificial molecule.
    Krenner HJ; Clark EC; Nakaoka T; Bichler M; Scheurer C; Abstreiter G; Finley JJ
    Phys Rev Lett; 2006 Aug; 97(7):076403. PubMed ID: 17026254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin selective pseudogap Kondo effect in a double quantum dot interferometer with Rashba interaction.
    Stefański P
    J Phys Condens Matter; 2013 Feb; 25(8):085303. PubMed ID: 23370331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.