These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20867335)

  • 1. Exciton diffusion in air-suspended single-walled carbon nanotubes.
    Moritsubo S; Murai T; Shimada T; Murakami Y; Chiashi S; Maruyama S; Kato YK
    Phys Rev Lett; 2010 Jun; 104(24):247402. PubMed ID: 20867335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intensity-dependent exciton dynamics of (6,5) single-walled carbon nanotubes: momentum selection rules, diffusion, and nonlinear interactions.
    Harrah DM; Schneck JR; Green AA; Hersam MC; Ziegler LD; Swan AK
    ACS Nano; 2011 Dec; 5(12):9898-906. PubMed ID: 22077149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation.
    Xiao YF; Nhan TQ; Wilson MW; Fraser JM
    Phys Rev Lett; 2010 Jan; 104(1):017401. PubMed ID: 20366391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy.
    Georgi C; Green AA; Hersam MC; Hartschuh A
    ACS Nano; 2010 Oct; 4(10):5914-20. PubMed ID: 20857945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes.
    Ma X; Roslyak O; Duque JG; Pang X; Doorn SK; Piryatinski A; Dunlap DH; Htoon H
    Phys Rev Lett; 2015 Jul; 115(1):017401. PubMed ID: 26182119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons.
    Murakami Y; Kono J
    Phys Rev Lett; 2009 Jan; 102(3):037401. PubMed ID: 19257392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton resonances quench the photoluminescence of zigzag carbon nanotubes.
    Reich S; Thomsen C; Robertson J
    Phys Rev Lett; 2005 Aug; 95(7):077402. PubMed ID: 16196822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared.
    Danné N; Kim M; Godin AG; Kwon H; Gao Z; Wu X; Hartmann NF; Doorn SK; Lounis B; Wang Y; Cognet L
    ACS Nano; 2018 Jun; 12(6):6059-6065. PubMed ID: 29889499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes.
    Georgi C; Hartmann N; Gokus T; Green AA; Hersam MC; Hartschuh A
    Chemphyschem; 2008 Jul; 9(10):1460-4. PubMed ID: 18506857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton localization of single-walled carbon nanotubes revealed by femtosecond excitation correlation spectroscopy.
    Hirori H; Matsuda K; Miyauchi Y; Maruyama S; Kanemitsu Y
    Phys Rev Lett; 2006 Dec; 97(25):257401. PubMed ID: 17280391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.
    Cognet L; Tsyboulski DA; Rocha JD; Doyle CD; Tour JM; Weisman RB
    Science; 2007 Jun; 316(5830):1465-8. PubMed ID: 17556581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes.
    Harrah DM; Swan AK
    ACS Nano; 2011 Jan; 5(1):647-55. PubMed ID: 21166468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes.
    Lefebvre J; Homma Y; Finnie P
    Phys Rev Lett; 2003 May; 90(21):217401. PubMed ID: 12786586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.