These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20867394)

  • 1. Structure modulation driven by cyclic deformation in nanocrystalline NiFe.
    Cheng S; Zhao Y; Wang Y; Li Y; Wang XL; Liaw PK; Lavernia EJ
    Phys Rev Lett; 2010 Jun; 104(25):255501. PubMed ID: 20867394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys.
    Cheng S; Lee SY; Li L; Lei C; Almer J; Wang XL; Ungar T; Wang Y; Liaw PK
    Phys Rev Lett; 2013 Mar; 110(13):135501. PubMed ID: 23581334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading.
    Luo XM; Zhu XF; Zhang GP
    Nat Commun; 2014; 5():3021. PubMed ID: 24389459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks.
    Pineau A
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-Assisted Grain Growth in Al Alloys.
    Goswami R; Feng CR; Qadri SB; Pande CS
    Sci Rep; 2017 Aug; 7(1):10179. PubMed ID: 28860668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.
    Fintová S; Kunz L
    J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Cycle Fatigue in the Transmission Electron Microscope.
    Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K
    Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse graining and localized plasticity between sliding nanocrystalline metals.
    Romero PA; Järvi TT; Beckmann N; Mrovec M; Moseler M
    Phys Rev Lett; 2014 Jul; 113(3):036101. PubMed ID: 25083655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Plasticity and Substantial Deformation in Nanocrystalline NiFe Alloys Under Dynamic Loading.
    Cheng S; Zhao Y; Guo Y; Li Y; Wei Q; Wang XL; Ren Y; Liaw PK; Choo H; Lavernia EJ
    Adv Mater; 2009 Dec; 21(48):5001-5004. PubMed ID: 25378188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure Evolution and Mechanical Stability of Supersaturated Solid Solution Co-Rich Nanocrystalline Co-Cu Produced by Pulsed Electrodeposition.
    Pratama K; Barrirero J; Mücklich F; Motz C
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32521757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wear mechanism of nanocrystalline metals.
    Qi Z; Jiang J; Meletis EI
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4227-32. PubMed ID: 19916435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the orientations of abnormally grown grains in nanocrystalline Ni and Ni-Fe.
    Klement U; da Silva M; Skrotzki W
    J Microsc; 2008 Jun; 230(Pt 3):455-63. PubMed ID: 18503672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength.
    Li Y; Raabe D; Herbig M; Choi PP; Goto S; Kostka A; Yarita H; Borchers C; Kirchheim R
    Phys Rev Lett; 2014 Sep; 113(10):106104. PubMed ID: 25238372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ TEM study of grain growth in nanocrystalline copper thin films.
    Simões S; Calinas R; Vieira MT; Vieira MF; Ferreira PJ
    Nanotechnology; 2010 Apr; 21(14):145701. PubMed ID: 20215662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of thermally-stable nanoscale grain structures by strain localization.
    Khalajhedayati A; Rupert TJ
    Sci Rep; 2015 Jun; 5():10663. PubMed ID: 26030826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monotonic and cyclic plastic deformation behavior of nanocrystalline gold: atomistic simulations.
    Rajput A; Ghosal P; Kumar A; Paul SK
    J Mol Model; 2019 May; 25(6):153. PubMed ID: 31073697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotation-limited growth of three-dimensional body-centered-cubic crystals.
    Tarp JM; Mathiesen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012409. PubMed ID: 26274188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.