These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20867507)

  • 1. Short-range force detection using optically cooled levitated microspheres.
    Geraci AA; Papp SB; Kitching J
    Phys Rev Lett; 2010 Sep; 105(10):101101. PubMed ID: 20867507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High sensitivity, levitated microsphere apparatus for short-distance force measurements.
    Kawasaki A; Fieguth A; Priel N; Blakemore CP; Martin D; Gratta G
    Rev Sci Instrum; 2020 Aug; 91(8):083201. PubMed ID: 32872897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yoctonewton force detection based on optically levitated oscillator.
    Liang T; Zhu S; He P; Chen Z; Wang Y; Li C; Fu Z; Gao X; Chen X; Li N; Zhu Q; Hu H
    Fundam Res; 2023 Jan; 3(1):57-62. PubMed ID: 38933574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Field GHz Rotation and Sensing with an Optically Levitated Nanodumbbell.
    Ju P; Jin Y; Shen K; Duan Y; Xu Z; Gao X; Ni X; Li T
    Nano Lett; 2023 Nov; 23(22):10157-10163. PubMed ID: 37909774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of mechanical forces acting on optically trapped dielectric spheres induced by surface-enhanced Raman scattering.
    Rao S; Bálint S; Løvhaugen P; Kreuzer M; Petrov D
    Phys Rev Lett; 2009 Feb; 102(8):087401. PubMed ID: 19257782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting high-frequency gravitational waves with optically levitated sensors.
    Arvanitaki A; Geraci AA
    Phys Rev Lett; 2013 Feb; 110(7):071105. PubMed ID: 25166367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Search for millicharged particles using optically levitated microspheres.
    Moore DC; Rider AD; Gratta G
    Phys Rev Lett; 2014 Dec; 113(25):251801. PubMed ID: 25554874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doppler cooling a microsphere.
    Barker PF
    Phys Rev Lett; 2010 Aug; 105(7):073002. PubMed ID: 20868038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orbital motion of optically trapped particles in Laguerre-Gaussian beams.
    Simpson SH; Hanna S
    J Opt Soc Am A Opt Image Sci Vis; 2010 Sep; 27(9):2061-71. PubMed ID: 20808417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow.
    Merenda F; Boer G; Rohner J; Delacrétaz G; Salathé RP
    Opt Express; 2006 Feb; 14(4):1685-99. PubMed ID: 19503495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and Suppression of Laser Intensity Fluctuation in a Dual-Beam Optical Levitation System.
    Wang X; Zhu Q; Hu M; Li W; Chen X; Li N; Zhu X; Hu H
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity cooling of an optically levitated submicron particle.
    Kiesel N; Blaser F; Delić U; Grass D; Kaltenbaek R; Aspelmeyer M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14180-5. PubMed ID: 23940352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning force sensing at micrometer distances from a conductive surface with nanospheres in an optical lattice.
    Montoya C; Alejandro E; Eom W; Grass D; Clarisse N; Witherspoon A; Geraci AA
    Appl Opt; 2022 Apr; 61(12):3486-3493. PubMed ID: 35471446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomechanics with levitated particles.
    Millen J; Monteiro TS; Pettit R; Vamivakas AN
    Rep Prog Phys; 2020 Feb; 83(2):026401. PubMed ID: 31825901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic optical trapping of microrods and nanowires.
    Simpson SH; Hanna S
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1255-64. PubMed ID: 20508694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of critical Casimir forces.
    Hertlein C; Helden L; Gambassi A; Dietrich S; Bechinger C
    Nature; 2008 Jan; 451(7175):172-5. PubMed ID: 18185584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.