These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20867554)

  • 1. Mesoscopic length scale controls the rheology of dense suspensions.
    Bonnoit C; Lanuza J; Lindner A; Clement E
    Phys Rev Lett; 2010 Sep; 105(10):108302. PubMed ID: 20867554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverging viscosity and soft granular rheology in non-Brownian suspensions.
    Kawasaki T; Coslovich D; Ikeda A; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012203. PubMed ID: 25679615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology and contact lifetimes in dense granular flows.
    Silbert LE; Grest GS; Brewster R; Levine AJ
    Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow, ordering, and jamming of sheared granular suspensions.
    Grebenkov DS; Ciamarra MP; Nicodemi M; Coniglio A
    Phys Rev Lett; 2008 Feb; 100(7):078001. PubMed ID: 18352596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlocal effects in sand flows on an inclined plane.
    Malloggi F; Andreotti B; Clément E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052202. PubMed ID: 26066168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unifying suspension and granular rheology.
    Boyer F; Guazzelli É; Pouliquen O
    Phys Rev Lett; 2011 Oct; 107(18):188301. PubMed ID: 22107679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of bi-disperse dense fiber suspensions.
    Khan M; Corder RD; Erk KA; Ardekani AM
    Soft Matter; 2024 Jan; 20(4):856-868. PubMed ID: 38170854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified framework for non-brownian suspension flows and soft amorphous solids.
    Lerner E; Düring G; Wyart M
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4798-803. PubMed ID: 22392976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries.
    Hofer M; Perktold K
    Biorheology; 1997; 34(4-5):261-79. PubMed ID: 9578803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.
    Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-induced agitations create a granular fluid: effective viscosity and fluctuations.
    Nichol K; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061309. PubMed ID: 23005088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the rheology of suspensions with high-viscosity solvents: a predictive multiscale approach.
    Chatterjee A; Heine DR; Rovelstad AL; Wu LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021406. PubMed ID: 19792123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlocal rheological properties of granular flows near a jamming limit.
    Aranson IS; Tsimring LS; Malloggi F; Clément E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031303. PubMed ID: 18851027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlocal Effects Reflect the Jamming Criticality in Frictionless Granular Flows Down Inclines.
    Perrin H; Wyart M; Metzger B; Forterre Y
    Phys Rev Lett; 2021 Jun; 126(22):228002. PubMed ID: 34152158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale clustering in granular surface flows.
    Bonamy D; Daviaud F; Laurent L; Bonetti M; Bouchaud JP
    Phys Rev Lett; 2002 Jul; 89(3):034301. PubMed ID: 12144395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear flow of non-Brownian suspensions close to jamming.
    Andreotti B; Barrat JL; Heussinger C
    Phys Rev Lett; 2012 Sep; 109(10):105901. PubMed ID: 23005302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulence Locality and Granularlike Fluid Shear Viscosity in Collisional Suspensions.
    Berzi D; Fraccarollo L
    Phys Rev Lett; 2015 Nov; 115(19):194501. PubMed ID: 26588387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. II. Shear modulus, relaxation-elasticity connections, and rheology.
    Yang J; Schweizer KS
    J Chem Phys; 2011 May; 134(20):204909. PubMed ID: 21639479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.