These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20867653)

  • 1. Acoustic phonon tunneling and heat transport due to evanescent electric fields.
    Prunnila M; Meltaus J
    Phys Rev Lett; 2010 Sep; 105(12):125501. PubMed ID: 20867653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.
    Chiloyan V; Garg J; Esfarjani K; Chen G
    Nat Commun; 2015 Apr; 6():6755. PubMed ID: 25849305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon heat transfer across a vacuum through quantum fluctuations.
    Fong KY; Li HK; Zhao R; Yang S; Wang Y; Zhang X
    Nature; 2019 Dec; 576(7786):243-247. PubMed ID: 31827291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-Casimir coupling can induce thermal resonance of adsorbed liquid layers in a nanogap.
    Chen W; Nagayama G
    Phys Chem Chem Phys; 2022 May; 24(19):11758-11769. PubMed ID: 35506712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuum phonon tunneling.
    Altfeder I; Voevodin AA; Roy AK
    Phys Rev Lett; 2010 Oct; 105(16):166101. PubMed ID: 21230983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-body amplification of photon heat tunneling.
    Messina R; Antezza M; Ben-Abdallah P
    Phys Rev Lett; 2012 Dec; 109(24):244302. PubMed ID: 23368325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths.
    Sääskilahti K; Oksanen J; Tulkki J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012128. PubMed ID: 23944435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon-induced diamagnetic force and its effect on the lattice thermal conductivity.
    Jin H; Restrepo OD; Antolin N; Boona SR; Windl W; Myers RC; Heremans JP
    Nat Mater; 2015 Jun; 14(6):601-6. PubMed ID: 25799325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat transport enhanced by optical phonons in one-dimensional anharmonic lattices with alternating bonds.
    Xiong D; Zhang Y; Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052128. PubMed ID: 24329235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant heat transfer in the crossover regime between conduction and radiation.
    Kloppstech K; Könne N; Biehs SA; Rodriguez AW; Worbes L; Hellmann D; Kittel A
    Nat Commun; 2017 Feb; 8():. PubMed ID: 28198369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of interfacial mode coupling of optical phonons on thermal boundary conductance.
    Giri A; Hopkins PE
    Sci Rep; 2017 Sep; 7(1):11011. PubMed ID: 28887443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity and large isotope effect in GaN from first principles.
    Lindsay L; Broido DA; Reinecke TL
    Phys Rev Lett; 2012 Aug; 109(9):095901. PubMed ID: 23002858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-dimensional superdiffusive heat propagation induced by optical phonon-phonon interactions.
    Xiong D; Zhang Y
    Phys Rev E; 2018 Jul; 98(1-1):012130. PubMed ID: 30110769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal management and non-reciprocal control of phonon flow via optomechanics.
    Seif A; DeGottardi W; Esfarjani K; Hafezi M
    Nat Commun; 2018 Mar; 9(1):1207. PubMed ID: 29572521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phononic properties of a periodic nanostructure including vacuum gap in the presence of effective interatomic interactions.
    Ghaderipoor L; Mardaani M; Amooghorban E; Rabani H
    Phys Rev E; 2021 Sep; 104(3-1):034121. PubMed ID: 34654132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial thermal resonance in an SiC-SiC nanogap with various atomic surface terminations.
    Li X; Chen W; Nagayama G
    Nanoscale; 2023 May; 15(19):8603-8610. PubMed ID: 37099403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.