BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

24 related articles for article (PubMed ID: 20867816)

  • 1. Estimation and update of betweenness centrality with progressive algorithm and shortest paths approximation.
    Xiang N; Wang Q; You M
    Sci Rep; 2023 Oct; 13(1):17110. PubMed ID: 37816806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hubs and Bottlenecks in Protein-Protein Interaction Networks.
    Nithya C; Kiran M; Nagarajaram HA
    Methods Mol Biol; 2024; 2719():227-248. PubMed ID: 37803121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Top influencers can be identified universally by combining classical centralities.
    Bucur D
    Sci Rep; 2020 Nov; 10(1):20550. PubMed ID: 33239723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shortest Paths in Multiplex Networks.
    Ghariblou S; Salehi M; Magnani M; Jalili M
    Sci Rep; 2017 May; 7(1):2142. PubMed ID: 28526822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying synergy and redundancy between networks.
    Luppi AI; Olbrich E; Finn C; Suárez LE; Rosas FE; Mediano PAM; Jost J
    Cell Rep Phys Sci; 2024 Apr; 5(4):101892. PubMed ID: 38720789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns.
    Tica J; Didangelos A
    Front Neurosci; 2018; 12():808. PubMed ID: 30519154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limits of Predictability of Cascading Overload Failures in Spatially-Embedded Networks with Distributed Flows.
    Moussawi A; Derzsy N; Lin X; Szymanski BK; Korniss G
    Sci Rep; 2017 Sep; 7(1):11729. PubMed ID: 28916772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Percolation transition in dynamical traffic network with evolving critical bottlenecks.
    Li D; Fu B; Wang Y; Lu G; Berezin Y; Stanley HE; Havlin S
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):669-72. PubMed ID: 25552558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascading failures in spatially-embedded random networks.
    Asztalos A; Sreenivasan S; Szymanski BK; Korniss G
    PLoS One; 2014; 9(1):e84563. PubMed ID: 24400101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two betweenness centrality measures based on Randomized Shortest Paths.
    Kivimäki I; Lebichot B; Saramäki J; Saerens M
    Sci Rep; 2016 Feb; 6():19668. PubMed ID: 26838176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Decomposition for Betweenness Centrality Measure of Complex Networks.
    Li Y; Li W; Tan Y; Liu F; Cao Y; Lee KY
    Sci Rep; 2017 Apr; 7():46491. PubMed ID: 28425442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjustable reach in a network centrality based on current flows.
    Gurfinkel AJ; Rikvold PA
    Phys Rev E; 2021 May; 103(5-1):052308. PubMed ID: 34134335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centrality scaling in large networks.
    Ercsey-Ravasz M; Toroczkai Z
    Phys Rev Lett; 2010 Jul; 105(3):038701. PubMed ID: 20867816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Range-limited centrality measures in complex networks.
    Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorbing random walks interpolating between centrality measures on complex networks.
    Gurfinkel AJ; Rikvold PA
    Phys Rev E; 2020 Jan; 101(1-1):012302. PubMed ID: 32069664
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.