BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20867816)

  • 21. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal pinning controllability of complex networks: dependence on network structure.
    Jalili M; Askari Sichani O; Yu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012803. PubMed ID: 25679653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Centrality in networks of urban streets.
    Crucitti P; Latora V; Porta S
    Chaos; 2006 Mar; 16(1):015113. PubMed ID: 16599779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence spreading model used to analyse social networks and detect sub-communities.
    Kuikka V
    Comput Soc Netw; 2018; 5(1):12. PubMed ID: 30546998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal node centrality in complex networks.
    Kim H; Anderson R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026107. PubMed ID: 22463279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Where to look for power Laws in urban road networks?
    Akbarzadeh M; Memarmontazerin S; Soleimani S
    Appl Netw Sci; 2018; 3(1):4. PubMed ID: 30839786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Edge betweenness centrality as a failure predictor in network models of structurally disordered materials.
    Pournajar M; Zaiser M; Moretti P
    Sci Rep; 2022 Jul; 12(1):11814. PubMed ID: 35821040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Betweenness centrality for temporal multiplexes.
    Zaoli S; Mazzarisi P; Lillo F
    Sci Rep; 2021 Mar; 11(1):4919. PubMed ID: 33649386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying the starting point of a spreading process in complex networks.
    Comin CH; Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056105. PubMed ID: 22181471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America.
    Carroll C; McRae BH; Brookes A
    Conserv Biol; 2012 Feb; 26(1):78-87. PubMed ID: 22010832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reducing the vulnerability of network by inserting modular topologies.
    Zou Z; Lai J; Gao J
    Chaos; 2013 Mar; 23(1):013121. PubMed ID: 23556958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. cytoHubba: identifying hub objects and sub-networks from complex interactome.
    Chin CH; Chen SH; Wu HH; Ho CW; Ko MT; Lin CY
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S11. PubMed ID: 25521941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comment on "Subgraph centrality in complex networks".
    Stevanović D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):026801. PubMed ID: 24032975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exact scaling properties of a hierarchical network model.
    Noh JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045103. PubMed ID: 12786419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.
    Newman ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016132. PubMed ID: 11461356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport in weighted networks: partition into superhighways and roads.
    Wu Z; Braunstein LA; Havlin S; Stanley HE
    Phys Rev Lett; 2006 Apr; 96(14):148702. PubMed ID: 16712129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topological structural classes of complex networks.
    Estrada E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016103. PubMed ID: 17358220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of centrality for the identification of influential spreaders in complex networks.
    de Arruda GF; Barbieri AL; Rodríguez PM; Rodrigues FA; Moreno Y; Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032812. PubMed ID: 25314487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors that predict better synchronizability on complex networks.
    Hong H; Kim BJ; Choi MY; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):067105. PubMed ID: 15244784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Top influencers can be identified universally by combining classical centralities.
    Bucur D
    Sci Rep; 2020 Nov; 10(1):20550. PubMed ID: 33239723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.