BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20868702)

  • 1. Explicit processing of verbal and spatial features during letter-location binding modulates oscillatory activity of a fronto-parietal network.
    Poch C; Campo P; Parmentier FB; Ruiz-Vargas JM; Elsley JV; Castellanos NP; Maestú F; del Pozo F
    Neuropsychologia; 2010 Nov; 48(13):3846-54. PubMed ID: 20868702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory activity in prefrontal and posterior regions during implicit letter-location binding.
    Campo P; Poch C; Parmentier FB; Moratti S; Elsley JV; Castellanos NP; Ruiz-Vargas JM; del Pozo F; Maestú F
    Neuroimage; 2010 Feb; 49(3):2807-15. PubMed ID: 19840857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal dynamics of parietal activity during word-location binding.
    Campo P; Maestú F; Capilla A; Morales M; Fernández S; del Río D; Ortiz T
    Neuropsychology; 2008 Jan; 22(1):85-99. PubMed ID: 18211158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of parietofrontal networks underlying visuospatial short-term memory encoding.
    Croizé AC; Ragot R; Garnero L; Ducorps A; Pélégrini-Issac M; Dauchot K; Benali H; Burnod Y
    Neuroimage; 2004 Nov; 23(3):787-99. PubMed ID: 15528080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference resolution in spatial working memory.
    Leung HC; Zhang JX
    Neuroimage; 2004 Nov; 23(3):1013-9. PubMed ID: 15528101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: a magnetoencephalography study.
    Takashima A; Jensen O; Oostenveld R; Maris E; van de Coevering M; Fernández G
    Neuroscience; 2006 Apr; 139(1):291-7. PubMed ID: 16325347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency.
    Wu X; Chen X; Li Z; Han S; Zhang D
    Neuroimage; 2007 May; 35(4):1654-62. PubMed ID: 17379539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained involvement of a frontal-parietal network for spatial response selection with practice of a spatial choice-reaction task.
    Schumacher EH; Hendricks MJ; D'Esposito M
    Neuropsychologia; 2005; 43(10):1444-55. PubMed ID: 15989935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
    Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C
    Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time modulated prefrontal and parietal activity during the maintenance of integrated information as revealed by magnetoencephalography.
    Campo P; Maestú F; Ortiz T; Capilla A; Santiuste M; Fernández A; Amo C
    Cereb Cortex; 2005 Feb; 15(2):123-30. PubMed ID: 15238441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Categorical and coordinate spatial relations in working memory: an fMRI study.
    van der Ham IJ; Raemaekers M; van Wezel RJ; Oleksiak A; Postma A
    Brain Res; 2009 Nov; 1297():70-9. PubMed ID: 19651111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a superior frontal-intraparietal network for visuo-spatial working memory.
    Klingberg T
    Neuropsychologia; 2006; 44(11):2171-7. PubMed ID: 16405923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional neuroanatomy of classic delayed response tasks in humans and the limitations of cross-method convergence in prefrontal function.
    Turner GR; Levine B
    Neuroscience; 2006 Apr; 139(1):327-37. PubMed ID: 16324791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prefrontal and parietal contributions to spatial working memory.
    Curtis CE
    Neuroscience; 2006 Apr; 139(1):173-80. PubMed ID: 16326021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus.
    Silk TJ; Bellgrove MA; Wrafter P; Mattingley JB; Cunnington R
    Neuroimage; 2010 Nov; 53(2):718-24. PubMed ID: 20615473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintaining coherence of dynamic objects requires coordination of neural systems extended from anterior frontal to posterior parietal brain cortices.
    Imaruoka T; Saiki J; Miyauchi S
    Neuroimage; 2005 May; 26(1):277-84. PubMed ID: 15862228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load response functions in the human spatial working memory circuit during location memory updating.
    Leung HC; Oh H; Ferri J; Yi Y
    Neuroimage; 2007 Mar; 35(1):368-77. PubMed ID: 17239618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.