BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20869132)

  • 41. Detection and identification of fungal growth on freeze-dried Agaricus bisporus using spectra and olfactory sensors.
    Wang L; Hu Q; Pei F; Mugambi MA; Yang W
    J Sci Food Agric; 2020 May; 100(7):3136-3146. PubMed ID: 32096232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inactivation effect of electron beam irradiation on fungal load of naturally contaminated maize seeds.
    Nemţanu MR; Braşoveanu M; Karaca G; Erper İ
    J Sci Food Agric; 2014 Oct; 94(13):2668-73. PubMed ID: 24604474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Equisetum arvense hydro-alcoholic extract: phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize.
    Garcia D; Ramos AJ; Sanchis V; Marín S
    J Sci Food Agric; 2013 Jul; 93(9):2248-53. PubMed ID: 23355286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection.
    Zhai HC; Zhang SB; Huang SX; Cai JP
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):596-603. PubMed ID: 25254604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PCR-restriction fragment length analysis of aflR gene for differentiation and detection of Aspergillus flavus and Aspergillus parasiticus in maize.
    Somashekar D; Rati ER; Chandrashekar A
    Int J Food Microbiol; 2004 May; 93(1):101-7. PubMed ID: 15135586
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape.
    Logrieco A; Moretti A; Perrone G; Mulè G
    Int J Food Microbiol; 2007 Oct; 119(1-2):11-6. PubMed ID: 17765992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of toxigenic fungi on Argentinean medicinal herbs.
    Rizzo I; Vedoya G; Maurutto S; Haidukowski M; Varsavsky E
    Microbiol Res; 2004; 159(2):113-20. PubMed ID: 15293944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia.
    Mukanga M; Derera J; Tongoona P; Laing MD
    Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.
    Lee H; Kim MS; Song YR; Oh CS; Lim HS; Lee WH; Kang JS; Cho BK
    J Sci Food Agric; 2017 Mar; 97(4):1084-1092. PubMed ID: 27264863
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.
    Siripatrawan U; Makino Y
    Int J Food Microbiol; 2015 Apr; 199():93-100. PubMed ID: 25662486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Population ecology of Aspergillus flavus associated with Mississippi Delta soils.
    Zablotowicz RM; Abbas HK; Locke MA
    Food Addit Contam; 2007 Oct; 24(10):1102-8. PubMed ID: 17886181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria.
    Atehnkeng J; Ojiambo PS; Donner M; Ikotun T; Sikora RA; Cotty PJ; Bandyopadhyay R
    Int J Food Microbiol; 2008 Feb; 122(1-2):74-84. PubMed ID: 18180068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Infection by mycotoxigenic fungal species and mycotoxin contamination of maize grain in Umbria, central Italy.
    Covarelli L; Beccari G; Salvi S
    Food Chem Toxicol; 2011 Sep; 49(9):2365-9. PubMed ID: 21723360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cultural and genetic approaches to managing mycotoxins in maize.
    Munkvold GP
    Annu Rev Phytopathol; 2003; 41():99-116. PubMed ID: 12730397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defense Responses to Mycotoxin-Producing Fungi Fusarium proliferatum, F. subglutinans, and Aspergillus flavus in Kernels of Susceptible and Resistant Maize Genotypes.
    Lanubile A; Maschietto V; De Leonardis S; Battilani P; Paciolla C; Marocco A
    Mol Plant Microbe Interact; 2015 May; 28(5):546-57. PubMed ID: 26024441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mycotoxicological investigations on maize and groundnuts from the endemic area of Mseleni joint disease in Kwazulu.
    Marasas WF; Van Rensburg SJ
    S Afr Med J; 1986 Mar; 69(6):369-74. PubMed ID: 3961620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toxigenic fungi: which are important?
    Pitt JI
    Med Mycol; 2000; 38 Suppl 1():17-22. PubMed ID: 11204142
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Significance of yeasts and moulds occurring in maize dough fermentation for 'kenkey' production.
    Jespersen L; Halm M; Kpodo K; Jakobsen M
    Int J Food Microbiol; 1994 Dec; 24(1-2):239-48. PubMed ID: 7703017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of storage time and agroecological zone on mould incidence and aflatoxin contamination of maize from traders in Uganda.
    Kaaya AN; Kyamuhangire W
    Int J Food Microbiol; 2006 Aug; 110(3):217-23. PubMed ID: 16822572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Incidence and detection of thermotolerant and thermophilic fungi from maize with particular reference to Thermoascus species.
    Wareing PW
    Int J Food Microbiol; 1997 Apr; 35(2):137-45. PubMed ID: 9105921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.