These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20869132)

  • 61. Multimycotoxin and fungal analysis of maize grains from south and southwestern Ethiopia.
    Getachew A; Chala A; Hofgaard IS; Brurberg MB; Sulyok M; Tronsmo AM
    Food Addit Contam Part B Surveill; 2018 Mar; 11(1):64-74. PubMed ID: 29258380
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fumonisin production by Fusarium verticillioides strains isolated from maize in Mexico and development of a polymerase chain reaction to detect potential toxigenic strains in grains.
    Sánchez-Rangel D; SanJuan-Badillo A; Plasencia J
    J Agric Food Chem; 2005 Nov; 53(22):8565-71. PubMed ID: 16248554
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mycotoxicological investigations on Zambian maize.
    Marasas WF; Kriek NP; Steyn M; van Rensburg SJ; van Schalkwyk DJ
    Food Cosmet Toxicol; 1978 Feb; 16(1):39-45. PubMed ID: 564851
    [No Abstract]   [Full Text] [Related]  

  • 64. Occurrence of aflatoxins and fumonisins in preharvest maize from south-western Nigeria.
    Bankole SA; Mabekoje OO
    Food Addit Contam; 2004 Mar; 21(3):251-5. PubMed ID: 15195472
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Toxicological characteristics of mold isolated from corn silage].
    Khristov B
    Vet Med Nauki; 1981; 18(7):92-7. PubMed ID: 7344284
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigations on Fusarium spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo.
    Shala-Mayrhofer V; Varga E; Marjakaj R; Berthiller F; Musolli A; Berisha D; Kelmendi B; Lemmens M
    Food Addit Contam Part B Surveill; 2013; 6(4):237-43. PubMed ID: 24779930
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mycobiota and mycotoxins in Brazilian peanut kernels from sowing to harvest.
    Gonçalez E; Nogueira JH; Fonseca H; Felicio JD; Pino FA; Corrêa B
    Int J Food Microbiol; 2008 Apr; 123(3):184-90. PubMed ID: 18295923
    [TBL] [Abstract][Full Text] [Related]  

  • 68. PCR-based diagnosis and quantification of mycotoxin producing fungi.
    Niessen L
    Int J Food Microbiol; 2007 Oct; 119(1-2):38-46. PubMed ID: 17804102
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of Fusarium verticillioides strains isolated from maize in Italy: fumonisin production, pathogenicity and genetic variability.
    Covarelli L; Stifano S; Beccari G; Raggi L; Lattanzio VM; Albertini E
    Food Microbiol; 2012 Aug; 31(1):17-24. PubMed ID: 22475938
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fungi producing significant mycotoxins.
    IARC Sci Publ; 2012; (158):1-30. PubMed ID: 23477193
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize.
    Camiletti BX; Moral J; Asensio CM; Torrico AK; Lucini EI; Giménez-Pecci MP; Michailides TJ
    Phytopathology; 2018 Jul; 108(7):818-828. PubMed ID: 29384448
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn.
    Gordon SH; Schudy RB; Wheeler BC; Wicklow DT; Greene RV
    Int J Food Microbiol; 1997 Apr; 35(2):179-86. PubMed ID: 9105926
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Studies on Aspergillus section Flavi isolated from maize in northern Italy.
    Giorni P; Magan N; Pietri A; Bertuzzi T; Battilani P
    Int J Food Microbiol; 2007 Feb; 113(3):330-8. PubMed ID: 17084935
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize.
    Giorni P; Magan N; Battilani P
    Int J Food Microbiol; 2009 Apr; 130(3):213-8. PubMed ID: 19239978
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spatio-temporal patterns of Aspergillus flavus infection and aflatoxin B
    Lu Y; Jia B; Yoon SC; Zhuang H; Ni X; Guo B; Gold SE; Fountain JC; Glenn AE; Lawrence KC; Zhang H; Guo X; Zhang F; Wang W
    Food Chem; 2022 Jul; 382():132340. PubMed ID: 35139463
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Extrinsic and intrinsic factors associated with mycotoxigenic fungi populations of maize grains (Zea mays L.) stored in silobags in Argentina].
    Castellari CC; Cendoya MG; Marcos Valle FJ; Barrera V; Pacin AM
    Rev Argent Microbiol; 2015; 47(4):350-9. PubMed ID: 26601597
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neural network pattern recognition of photoacoustic FTIR spectra and knowledge-based techniques for detection of mycotoxigenic fungi in food grains.
    Gordon SH; Wheeler BC; Schudy RB; Wicklow DT; Greene RV
    J Food Prot; 1998 Feb; 61(2):221-30. PubMed ID: 9708286
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Influence of temperature on growth rate and lag phase of fungi isolated from Argentine corn.
    González HH; Resnik SL; Vaamonde G
    Int J Food Microbiol; 1988 Mar; 6(2):179-83. PubMed ID: 3275297
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Determination of hardness for maize kernels based on hyperspectral imaging.
    Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H
    Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Non-destructive techniques for the detection of fungal infection in cereal grains.
    Orina I; Manley M; Williams PJ
    Food Res Int; 2017 Oct; 100(Pt 1):74-86. PubMed ID: 28873744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.