These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 20869498)

  • 21. Nanomaterials based electrochemical sensors for biomedical applications.
    Chen A; Chatterjee S
    Chem Soc Rev; 2013 Jun; 42(12):5425-38. PubMed ID: 23508125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA polymorphism sensitive impedimetric detection on gold-nanoislands modified electrodes.
    Bonanni A; Pividori MI; del Valle M
    Talanta; 2015 May; 136():95-101. PubMed ID: 25702990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications.
    Chen T; Shukoor MI; Chen Y; Yuan Q; Zhu Z; Zhao Z; Gulbakan B; Tan W
    Nanoscale; 2011 Feb; 3(2):546-56. PubMed ID: 21109879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode.
    Huang KJ; Niu DJ; Xie WZ; Wang W
    Anal Chim Acta; 2010 Feb; 659(1-2):102-8. PubMed ID: 20103110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes.
    Zhang W; Zong P; Zheng X; Wang L
    Biosens Bioelectron; 2013 Apr; 42():481-5. PubMed ID: 23238322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of nanomaterials for biosensing applications.
    Li L; Wang T; Zhong Y; Li R; Deng W; Xiao X; Xu Y; Zhang J; Hu X; Wang Y
    J Mater Chem B; 2024 Jan; 12(5):1168-1193. PubMed ID: 38193143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomaterial-based amplified transduction of biomolecular interactions.
    Wang J
    Small; 2005 Nov; 1(11):1036-43. PubMed ID: 17193390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of tin(II) and arsenic(III) with DNA at the nanostructure film modified electrodes.
    Ferancová A; Adamovski M; Gründler P; Zima J; Barek J; Mattusch J; Wennrich R; Labuda J
    Bioelectrochemistry; 2007 Sep; 71(1):33-7. PubMed ID: 16987714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles.
    Deng C; Chen J; Nie Z; Wang M; Chu X; Chen X; Xiao X; Lei C; Yao S
    Anal Chem; 2009 Jan; 81(2):739-45. PubMed ID: 19072036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?
    Yang W; Ratinac KR; Ringer SP; Thordarson P; Gooding JJ; Braet F
    Angew Chem Int Ed Engl; 2010 Mar; 49(12):2114-38. PubMed ID: 20187048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode.
    Wu BY; Hou SH; Yin F; Zhao ZX; Wang YY; Wang XS; Chen Q
    Biosens Bioelectron; 2007 Jun; 22(12):2854-60. PubMed ID: 17212983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy.
    Male KB; Lachance B; Hrapovic S; Sunahara G; Luong JH
    Anal Chem; 2008 Jul; 80(14):5487-93. PubMed ID: 18553941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Azide photochemistry for facile modification of graphitic surfaces: preparation of DNA-coated carbon nanotubes for biosensing.
    Moghaddam MJ; Yang W; Bojarski B; Gengenbach TR; Gao M; Zareie H; McCall MJ
    Nanotechnology; 2012 Oct; 23(42):425503. PubMed ID: 23037575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles.
    Li CZ; Liu Y; Luong JH
    Anal Chem; 2005 Jan; 77(2):478-85. PubMed ID: 15649043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Performance Biosensing Systems Based on Various Nanomaterials as Signal Transducers.
    Lee J; Adegoke O; Park EY
    Biotechnol J; 2019 Jan; 14(1):e1800249. PubMed ID: 30117715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods for the preparation of electrochemical composite biosensors based on gold nanoparticles.
    González-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Methods Mol Biol; 2009; 504():157-66. PubMed ID: 19159097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical DNA biosensor based on conducting polyaniline nanotube array.
    Chang H; Yuan Y; Shi N; Guan Y
    Anal Chem; 2007 Jul; 79(13):5111-5. PubMed ID: 17530821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and electrochemical applications of gold nanoparticles.
    Guo S; Wang E
    Anal Chim Acta; 2007 Aug; 598(2):181-92. PubMed ID: 17719891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent progress in nanosensors for sensitive detection of biomolecules.
    Wang J; Qu X
    Nanoscale; 2013 May; 5(9):3589-600. PubMed ID: 23529571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplified transduction of biomolecular interactions based on the use of nanomaterials.
    Wang J
    Adv Biochem Eng Biotechnol; 2008; 109():239-54. PubMed ID: 17987277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.