BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 20869590)

  • 1. Ion channel voltage sensors: structure, function, and pathophysiology.
    Catterall WA
    Neuron; 2010 Sep; 67(6):915-28. PubMed ID: 20869590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.
    Chen J; Mitcheson JS; Tristani-Firouzi M; Lin M; Sanguinetti MC
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11277-82. PubMed ID: 11553787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.
    Decher N; Chen J; Sanguinetti MC
    J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity.
    Caprini M; Fava M; Valente P; Fernandez-Ballester G; Rapisarda C; Ferroni S; Ferrer-Montiel A
    J Biol Chem; 2005 May; 280(18):18253-64. PubMed ID: 15749711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac.
    Gamal El-Din TM; Scheuer T; Catterall WA
    J Gen Physiol; 2014 Aug; 144(2):147-57. PubMed ID: 25070432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for gating charge movement in the voltage sensor of a sodium channel.
    Yarov-Yarovoy V; DeCaen PG; Westenbroek RE; Pan CY; Scheuer T; Baker D; Catterall WA
    Proc Natl Acad Sci U S A; 2012 Jan; 109(2):E93-102. PubMed ID: 22160714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating Pore Currents in Sodium Channels.
    Groome JR; Moreau A; Delemotte L
    Handb Exp Pharmacol; 2018; 246():371-399. PubMed ID: 28965172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels.
    Bell DC; Yao H; Saenger RC; Riley JH; Siegelbaum SA
    J Gen Physiol; 2004 Jan; 123(1):5-19. PubMed ID: 14676285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels.
    Shimomura T; Irie K; Nagura H; Imai T; Fujiyoshi Y
    J Biol Chem; 2011 Mar; 286(9):7409-17. PubMed ID: 21177850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of HCN channel voltage dependence via bridging of the S4-S5 linker and Post-S6.
    Prole DL; Yellen G
    J Gen Physiol; 2006 Sep; 128(3):273-82. PubMed ID: 16908727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations.
    Sokolov S; Scheuer T; Catterall WA
    Neuron; 2005 Jul; 47(2):183-9. PubMed ID: 16039561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing.
    Chahine M; Pilote S; Pouliot V; Takami H; Sato C
    J Membr Biol; 2004 Sep; 201(1):9-24. PubMed ID: 15635808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel.
    Wisedchaisri G; Tonggu L; McCord E; Gamal El-Din TM; Wang L; Zheng N; Catterall WA
    Cell; 2019 Aug; 178(4):993-1003.e12. PubMed ID: 31353218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The concerted contribution of the S4-S5 linker and the S6 segment to the modulation of a Kv channel by 1-alkanols.
    Bhattacharji A; Kaplan B; Harris T; Qu X; Germann MW; Covarrubias M
    Mol Pharmacol; 2006 Nov; 70(5):1542-54. PubMed ID: 16887933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common pathway for charge transport through voltage-sensing domains.
    Chanda B; Bezanilla F
    Neuron; 2008 Feb; 57(3):345-51. PubMed ID: 18255028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-gated ion channels and gating modifier toxins.
    Catterall WA; Cestèle S; Yarov-Yarovoy V; Yu FH; Konoki K; Scheuer T
    Toxicon; 2007 Feb; 49(2):124-41. PubMed ID: 17239913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.
    Piao HH; Rajakumar D; Kang BE; Kim EH; Baker BJ
    J Neurosci; 2015 Jan; 35(1):372-85. PubMed ID: 25568129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain.
    Choveau FS; Rodriguez N; Abderemane Ali F; Labro AJ; Rose T; Dahimène S; Boudin H; Le Hénaff C; Escande D; Snyders DJ; Charpentier F; Mérot J; Baró I; Loussouarn G
    J Biol Chem; 2011 Jan; 286(1):707-16. PubMed ID: 20940310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating pore currents in DIIS4 mutations of NaV1.4 associated with periodic paralysis: saturation of ion flux and implications for disease pathogenesis.
    Struyk AF; Markin VS; Francis D; Cannon SC
    J Gen Physiol; 2008 Oct; 132(4):447-64. PubMed ID: 18824591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow conformational changes of the voltage sensor during the mode shift in hyperpolarization-activated cyclic-nucleotide-gated channels.
    Bruening-Wright A; Larsson HP
    J Neurosci; 2007 Jan; 27(2):270-8. PubMed ID: 17215386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.