These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 20869765)
1. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Zhang Q; Mochalin VN; Neitzel I; Knoke IY; Han J; Klug CA; Zhou JG; Lelkes PI; Gogotsi Y Biomaterials; 2011 Jan; 32(1):87-94. PubMed ID: 20869765 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Zhang Q; Mochalin VN; Neitzel I; Hazeli K; Niu J; Kontsos A; Zhou JG; Lelkes PI; Gogotsi Y Biomaterials; 2012 Jul; 33(20):5067-75. PubMed ID: 22494891 [TBL] [Abstract][Full Text] [Related]
3. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering. Zhang F; Song Q; Huang X; Li F; Wang K; Tang Y; Hou C; Shen H ACS Appl Mater Interfaces; 2016 Jan; 8(2):1087-97. PubMed ID: 26646188 [TBL] [Abstract][Full Text] [Related]
4. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Hickey DJ; Ercan B; Sun L; Webster TJ Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875 [TBL] [Abstract][Full Text] [Related]
5. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714 [TBL] [Abstract][Full Text] [Related]
6. Poly(L-lactic acid)/hydroxyapatite nanocylinders as nanofibrous structure for bone tissue engineering scaffolds. Lee JB; Park HN; Ko WK; Bae MS; Heo DN; Yang DH; Kwon IK J Biomed Nanotechnol; 2013 Mar; 9(3):424-9. PubMed ID: 23620998 [TBL] [Abstract][Full Text] [Related]
7. Development of Composite Poly(Lactide-co-Glycolide)- Nanodiamond Scaffolds for Bone Cell Growth. Brady MA; Renzing A; Douglas TE; Liu Q; Wille S; Parizek M; Bacakova L; Kromka A; Jarosova M; Godier G; Warnkel PH J Nanosci Nanotechnol; 2015 Feb; 15(2):1060-9. PubMed ID: 26353613 [TBL] [Abstract][Full Text] [Related]
8. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
9. Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. Chang PC; Liu BY; Liu CM; Chou HH; Ho MH; Liu HC; Wang DM; Hou LT J Biomed Mater Res A; 2007 Jun; 81(4):771-80. PubMed ID: 17226806 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244 [TBL] [Abstract][Full Text] [Related]
11. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
12. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
13. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Bagchi A; Meka SR; Rao BN; Chatterjee K Nanotechnology; 2014 Dec; 25(48):485101. PubMed ID: 25379989 [TBL] [Abstract][Full Text] [Related]
14. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
15. Osteogenic properties of PBLG-g-HA/PLLA nanocomposites. Liao L; Yang S; Miron RJ; Wei J; Zhang Y; Zhang M PLoS One; 2014; 9(9):e105876. PubMed ID: 25184285 [TBL] [Abstract][Full Text] [Related]
16. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Qian J; Xu W; Yong X; Jin X; Zhang W Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891 [TBL] [Abstract][Full Text] [Related]
19. Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. Shuai C; Li Y; Wang G; Yang W; Peng S; Feng P Int J Biol Macromol; 2019 Apr; 126():1116-1124. PubMed ID: 30611811 [TBL] [Abstract][Full Text] [Related]
20. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]