These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 20870268)

  • 41. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.
    Krznaric E; Verbruggen N; Wevers JH; Carleer R; Vangronsveld J; Colpaert JV
    Environ Pollut; 2009 May; 157(5):1581-8. PubMed ID: 19211178
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere.
    Al-Alawi MM; Mandiwana KL
    J Hazard Mater; 2007 Sep; 148(1-2):43-6. PubMed ID: 17363145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of bacterial communities at heavy-metal-contaminated sites.
    Margesin R; Płaza GA; Kasenbacher S
    Chemosphere; 2011 Mar; 82(11):1583-8. PubMed ID: 21159361
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs.
    Zhang WJ; Zhu W; Hu S
    J Environ Sci (China); 2005; 17(5):705-10. PubMed ID: 16312988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oribatid mite communities and metal bioaccumulation in oribatid species (Acari, Oribatida) along the heavy metal gradient in forest ecosystems.
    Skubała P; Kafel A
    Environ Pollut; 2004 Nov; 132(1):51-60. PubMed ID: 15276273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia.
    Hovmand MF; Kemp K; Kystol J; Johnsen I; Riis-Nielsen T; Pacyna JM
    Environ Pollut; 2008 Oct; 155(3):537-41. PubMed ID: 18359134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The speciation of water-soluble Al and Zn in the rhizosphere of forest soils.
    Cloutier-Hurteau B; Turmel MC; Sauvé S; Courchesne F
    J Environ Monit; 2010 Jun; 12(6):1274-86. PubMed ID: 20383395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity.
    Bidar G; Garçon G; Pruvot C; Dewaele D; Cazier F; Douay F; Shirali P
    Environ Pollut; 2007 Jun; 147(3):546-53. PubMed ID: 17141383
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of 2,4-dichlorophenol, pentachlorophenol and vegetation on microbial characteristics in a heavy metal polluted soil.
    Lin Q; Zhao HM; Chen YX
    J Environ Sci Health B; 2007; 42(5):551-7. PubMed ID: 17562463
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.
    Long XX; Zhang YG; Jun D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):460-7. PubMed ID: 19183820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect.
    Smith EJ; Hughes S; Lawlor AJ; Lofts S; Simon BM; Stevens PA; Stidson RT; Tipping E; Vincent CD
    Environ Pollut; 2005 Jul; 136(1):11-8. PubMed ID: 15809104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area.
    Komárek M; Chrastný V; Stíchová J
    Environ Int; 2007 Jul; 33(5):677-84. PubMed ID: 17346793
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils.
    Barajas-Aceves M
    Bioresour Technol; 2005 Aug; 96(12):1405-14. PubMed ID: 15792589
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of metal pollution on soil faunal and microbial activity in two grassland ecosystems.
    Boshoff M; De Jonge M; Dardenne F; Blust R; Bervoets L
    Environ Res; 2014 Oct; 134():169-80. PubMed ID: 25173048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.
    Rousk J; Rousk K
    Environ Pollut; 2018 Sep; 240():297-305. PubMed ID: 29747113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine.
    Epelde L; Lanzén A; Blanco F; Urich T; Garbisu C
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-11. PubMed ID: 25764532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metagenomic analysis of microbial community and function involved in cd-contaminated soil.
    Feng G; Xie T; Wang X; Bai J; Tang L; Zhao H; Wei W; Wang M; Zhao Y
    BMC Microbiol; 2018 Feb; 18(1):11. PubMed ID: 29439665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: a field study focusing on plants, springtails, and bacteria.
    Bert V; Lors C; Ponge JF; Caron L; Biaz A; Dazy M; Masfaraud JF
    Environ Pollut; 2012 Oct; 169():1-11. PubMed ID: 22647548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coupling geochemical, mineralogical and microbiological approaches to assess the health of contaminated soil around the Almalyk mining and smelter complex, Uzbekistan.
    Shukurov N; Kodirov O; Peitzsch M; Kersten M; Pen-Mouratov S; Steinberger Y
    Sci Total Environ; 2014 Apr; 476-477():447-59. PubMed ID: 24486500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions.
    Sun W; Xiao E; Krumins V; Häggblom MM; Dong Y; Pu Z; Li B; Wang Q; Xiao T; Li F
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.