These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 20870272)

  • 1. Fate simulation and risk assessment of endocrine disrupting chemicals in a reservoir receiving recycled wastewater.
    Cao Q; Yu Q; Connell DW
    Sci Total Environ; 2010 Nov; 408(24):6243-50. PubMed ID: 20870272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and removal of endocrine-disrupting chemicals in wastewater treatment plants in the Three Gorges Reservoir area, Chongqing, China.
    Ye X; Guo X; Cui X; Zhang X; Zhang H; Wang MK; Qiu L; Chen S
    J Environ Monit; 2012 Aug; 14(8):2204-11. PubMed ID: 22695474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing predicted estrogen concentrations with measurements in US waters.
    Kostich M; Flick R; Martinson J
    Environ Pollut; 2013 Jul; 178():271-7. PubMed ID: 23587857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of modelling to predict levels of estrogens in a river catchment: how does modelled data compare with chemical analysis and in vitro yeast assay results?
    Balaam JL; Grover D; Johnson AC; Jürgens M; Readman J; Smith AJ; White S; Williams R; Zhou JL
    Sci Total Environ; 2010 Sep; 408(20):4826-32. PubMed ID: 20673965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water.
    Sun Y; Huang H; Sun Y; Wang C; Shi XL; Hu HY; Kameya T; Fujie K
    Environ Pollut; 2013 Sep; 180():339-44. PubMed ID: 23735815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal and spatial distribution of several endocrine-disrupting compounds in the Douro River Estuary, Portugal.
    Ribeiro C; Tiritan ME; Rocha E; Rocha MJ
    Arch Environ Contam Toxicol; 2009 Jan; 56(1):1-11. PubMed ID: 18368434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How seasonality affects the flow of estrogens and their conjugates in one of Japan's most populous catchments.
    Kumar V; Nakada N; Yamashita N; Johnson AC; Tanaka H
    Environ Pollut; 2011 Oct; 159(10):2906-12. PubMed ID: 21600683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processes for the elimination of estrogenic steroid hormones from water: a review.
    Silva CP; Otero M; Esteves V
    Environ Pollut; 2012 Jun; 165():38-58. PubMed ID: 22402263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocrine disrupting activities in sewage effluent and river water determined by chemical analysis and in vitro assay in the context of granular activated carbon upgrade.
    Grover DP; Balaam J; Pacitto S; Readman JW; White S; Zhou JL
    Chemosphere; 2011 Sep; 84(10):1512-20. PubMed ID: 21546050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters.
    Jiang JQ; Yin Q; Zhou JL; Pearce P
    Chemosphere; 2005 Oct; 61(4):544-50. PubMed ID: 16202808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccumulation, metabolism, and risk assessment of phenolic endocrine disrupting chemicals in specific tissues of wild fish.
    Lv YZ; Yao L; Wang L; Liu WR; Zhao JL; He LY; Ying GG
    Chemosphere; 2019 Jul; 226():607-615. PubMed ID: 30954895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic biodegradation of estrogens--hard to digest.
    de Mes TZ; Kujawa-Roeleveld K; Zeeman G; Lettinga G
    Water Sci Technol; 2008; 57(8):1177-82. PubMed ID: 18469388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endocrine disrupting chemicals in wild freshwater fishes: Species, tissues, sizes and human health risks.
    Zhou X; Yang Z; Luo Z; Li H; Chen G
    Environ Pollut; 2019 Jan; 244():462-468. PubMed ID: 30366293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation rate constants of steroids in sewage treatment works and receiving water.
    Cao Q; Yu Q; Connell DW
    Environ Technol; 2008 Dec; 29(12):1321-30. PubMed ID: 19149353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China.
    Zhou Y; Zha J; Wang Z
    Environ Monit Assess; 2012 Nov; 184(11):6799-813. PubMed ID: 22134856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balancing the budget of environmental estrogen exposure: the contribution of recycled water.
    Leusch FD; Moore MR; Chapman HF
    Water Sci Technol; 2009; 60(4):1003-12. PubMed ID: 19700839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocrine-disrupting compounds in reclaimed water and residential ponds and exposure potential for dislodgeable residues in turf irrigated with reclaimed water.
    Sidhu HS; Wilson PC; O'Connor GA
    Arch Environ Contam Toxicol; 2015 Jul; 69(1):81-8. PubMed ID: 25758534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of estrogens in sewage sludge and their fate during plant-scale anaerobic digestion.
    Muller M; Combalbert S; Delgenès N; Bergheaud V; Rocher V; Benoît P; Delgenès JP; Patureau D; Hernandez-Raquet G
    Chemosphere; 2010 Sep; 81(1):65-71. PubMed ID: 20673956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand.
    Sarmah AK; Northcott GL; Leusch FD; Tremblay LA
    Sci Total Environ; 2006 Feb; 355(1-3):135-44. PubMed ID: 16442435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.