These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20870357)

  • 41. [Flushing of phenanthrene in sandy soils by triton X-100 and sodium dodecyl sulfate].
    Zhao BW; Wang HF; Che HL; Xu J; Zhang CL; Wang P
    Huan Jing Ke Xue; 2010 Jul; 31(7):1631-7. PubMed ID: 20825037
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil.
    Saichek RE; Reddy KR
    Chemosphere; 2003 Apr; 51(4):273-87. PubMed ID: 12604079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Optimization of electrode configuration in soil electrokinetic remediation].
    Liu F; Fu RB; Xu Z
    Huan Jing Ke Xue; 2015 Feb; 36(2):678-85. PubMed ID: 26031098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.
    Ni H; Zhou W; Zhu L
    J Environ Sci (China); 2014 May; 26(5):1071-9. PubMed ID: 25079637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.
    Biswas B; Sarkar B; Mandal A; Naidu R
    J Hazard Mater; 2015 Nov; 298():129-37. PubMed ID: 26022853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper removal from contaminated soil through electrokinetic process with reactive filter media.
    Ghobadi R; Altaee A; Zhou JL; McLean P; Yadav S
    Chemosphere; 2020 Aug; 252():126607. PubMed ID: 32443274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay.
    Isosaari P; Piskonen R; Ojala P; Voipio S; Eilola K; Lehmus E; Itävaara M
    J Hazard Mater; 2007 Jun; 144(1-2):538-48. PubMed ID: 17112659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier.
    Sun Y; Gao K; Zhang Y; Zou H
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28142-28151. PubMed ID: 29019041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis and Optimization of Mn Removal from Contaminated Solid Matrixes by Electrokinetic Remediation.
    Cameselle C; Gouveia S; Cabo A
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32168914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods.
    Song Y; Cang L; Zuo Y; Yang J; Zhou D; Duan T; Wang R
    Chemosphere; 2020 Mar; 243():125439. PubMed ID: 31995887
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.
    Meng F; Xue H; Wang Y; Zheng B; Wang J
    Environ Technol; 2018 Feb; 39(3):356-362. PubMed ID: 28278094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of ultrasound on removal of persistent organic pollutants (POPs) from different types of soils.
    Shrestha RA; Pham TD; Sillanpää M
    J Hazard Mater; 2009 Oct; 170(2-3):871-5. PubMed ID: 19553013
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Remediation process monitoring of PAH-contaminated soils using laser-induced fluorescence.
    Ko EJ; Kim KW; Wachsmuth U
    Environ Monit Assess; 2004 Mar; 92(1-3):179-91. PubMed ID: 15038543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrate removal by electro-bioremediation technology in Korean soil.
    Choi JH; Maruthamuthu S; Lee HG; Ha TH; Bae JH
    J Hazard Mater; 2009 Sep; 168(2-3):1208-16. PubMed ID: 19342160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toxic elements in soil and groundwater: short-time study on electrokinetic removal of arsenic in the presence of other ions.
    Leszczynska D; Ahmad H
    Int J Environ Res Public Health; 2006 Jun; 3(2):196-201. PubMed ID: 16823093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Migration of heavy metals and migration-degradation of phenanthrene in soil using electro kinetic-laccase combined remediation system.
    Wang Z; Ren D; Kang C; Zhang S; Zhang X; Deng Z; Huang C; Guo H
    J Environ Sci Health B; 2020; 55(8):704-711. PubMed ID: 32500809
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers.
    Fonseca B; Pazos M; Tavares T; Sanromán MA
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1800-8. PubMed ID: 22203400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode.
    Luo Q; Wang H; Zhang X; Fan X; Qian Y
    Chemosphere; 2006 Jun; 64(3):415-22. PubMed ID: 16406052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of aging on the extractability of naphthalene and phenanthrene from Mediterranean soils.
    Ncibi MC; Mahjoub B; Gourdon R
    J Hazard Mater; 2007 Jul; 146(1-2):378-84. PubMed ID: 17241741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils.
    Crognale S; Cocarta DM; Streche C; D'Annibale A
    N Biotechnol; 2020 Sep; 58():38-44. PubMed ID: 32497678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.