These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 20870513)

  • 1. Neural network classification of myoelectric signal for prosthesis control.
    Kelly MF; Parker PA; Scott RN
    J Electromyogr Kinesiol; 1991 Dec; 1(4):229-36. PubMed ID: 20870513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis.
    Karlik B; Tokhi MO; Alci M
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of self organizing maps to evaluate myoelectric signals.
    Patterson PE; Anderson M
    Biomed Sci Instrum; 1999; 35():147-52. PubMed ID: 11143337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of neural networks to myoelectric signal analysis: a preliminary study.
    Kelly MF; Parker PA; Scott RN
    IEEE Trans Biomed Eng; 1990 Mar; 37(3):221-30. PubMed ID: 2328997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic determination of synergies by radial basis function artificial neural networks for the control of a neural prosthesis.
    Iftime SD; Egsgaard LL; Popović MB
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):482-9. PubMed ID: 16425830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoelectric signal analysis using neural networks.
    Kelly MF; Parker PA; Scott RN
    IEEE Eng Med Biol Mag; 1990; 9(1):61-4. PubMed ID: 18238322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic discrimination of myoelectric signals via parallel cascade identification.
    Korenberg MJ; Morin EL
    Ann Biomed Eng; 1997; 25(4):708-12. PubMed ID: 9236982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical application study of externally powered upper-limb prosthetics systems: the VA elbow, the VA hand, and the VA/NU myoelectric hand systems.
    Lewis EA; Sheredos CR; Sowell TT; Houston VL
    Bull Prosthet Res; 1975; (10-24):51-136. PubMed ID: 776301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The application of BP neural network improved with LM algorithm in surface EMG signal classification].
    Zhang K; Wang ZZ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2005 Nov; 29(6):399-401. PubMed ID: 16494048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on the surface EMG pattern classification with BP neural networks].
    Wang R; Huang C; Li B; Jin D; Zhang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 1998 Mar; 22(2):63-6. PubMed ID: 12016830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wavelet-based continuous classification scheme for multifunction myoelectric control.
    Englehart K; Hudgins B; Parker PA
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):302-11. PubMed ID: 11327498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The function of brachioradialis.
    Boland MR; Spigelman T; Uhl TL
    J Hand Surg Am; 2008 Dec; 33(10):1853-9. PubMed ID: 19084189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active upper limb prosthesis based on natural movement trajectories.
    Ramírez-García A; Leija L; Muñoz R
    Prosthet Orthot Int; 2010 Mar; 34(1):58-72. PubMed ID: 20196688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical measurements of forearm pronosupination with common methods of immobilization.
    Trocchia AM; Elfar JC; Hammert WC
    J Hand Surg Am; 2012 May; 37(5):989-94. PubMed ID: 22483179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB; Walley M
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove.
    Sebelius FC; Rosén BN; Lundborg GN
    J Hand Surg Am; 2005 Jul; 30(4):780-9. PubMed ID: 16039372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoelectric elbow and hand prosthesis controlled by signals from 2 muscles only, in a 9 year old girl.
    Philipson L; Sörbye R
    Prosthet Orthot Int; 1981 Apr; 5(1):29-32. PubMed ID: 7279611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elbow torques and EMG patterns of flexor muscles during different isometric tasks.
    Caldwell GE; Van Leemputte M
    Electromyogr Clin Neurophysiol; 1991; 31(7):433-45. PubMed ID: 1748080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.