BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 20870531)

  • 1. Influence of intracellular potential and conduction velocity on extracellular muscle fibre potential.
    Radicheva NI; Kolev VB; Peneva NE
    J Electromyogr Kinesiol; 1993; 3(2):95-102. PubMed ID: 20870531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-Aminopyridine and tetraethylammonium-induced changes in action potentials of unmyelinated axons.
    Radicheva NI; Kolev VB
    Acta Physiol Pharmacol Bulg; 1992; 18(1):21-6. PubMed ID: 1303016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frog muscle fibre action potential and different extracellular calcium concentration at lowered pH in the medium.
    Radicheva N; Mileva K; Martinov V
    Acta Physiol Pharmacol Bulg; 1998; 23(3-4):107-13. PubMed ID: 10672337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral and time domain characteristics of single muscle fibre action potentials during continuous activity extracted from model considerations.
    Radicheva N; Slavcheva G
    Biol Cybern; 1998 Nov; 79(5):427-35. PubMed ID: 9851022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the muscle fibre extracellular action potentials in long-lasting (fatiguing) activity.
    Radicheva N; Gerilovsky L; Gydikov A
    Eur J Appl Physiol Occup Physiol; 1986; 55(5):545-52. PubMed ID: 3769911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular potentials of single active muscle fibres: effects of finite fibre length.
    Gydikov AA; Trayanova NA
    Biol Cybern; 1986; 53(6):363-72. PubMed ID: 3697406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular action potentials of skeletal muscle fibre affected by 4-aminopyridine: a model study.
    Slavcheva G; Kolev V; Radicheva N
    Biol Cybern; 1996 Mar; 74(3):235-41. PubMed ID: 8867469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity.
    Vydevska-Chichova M; Mileva K; Radicheva N
    J Electromyogr Kinesiol; 2007 Apr; 17(2):131-41. PubMed ID: 16524744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence between intra- and extracellular action potentials of isolated frog muscle fibres at different temperatures.
    Gerilovsky L; Radicheva N; Gydikov A
    Acta Physiol Pharmacol Bulg; 1988; 14(4):12-9. PubMed ID: 3245457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of microwave electromagnetic field on skeletal muscle fibre activity.
    Radicheva N; Mileva K; Vukova T; Georgieva B; Kristev I
    Arch Physiol Biochem; 2002 Jul; 110(3):203-14. PubMed ID: 12221521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular potential field of excited isolated frog muscle fibres immersed in a volume conductor.
    Gydikov A; Gerilovsky L; Radicheva N
    Gen Physiol Biophys; 1986 Apr; 5(2):125-34. PubMed ID: 3792817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the duration of intracellular action potentials in muscle fibres from single-fibre extracellular potentials.
    Rodríguez J; Navallas J; Gila L; Dimitrova NA; Malanda A
    J Neurosci Methods; 2011 Apr; 197(2):221-30. PubMed ID: 21396959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the rise-time of single-fibre action potentials and radial distance in human muscle fibres.
    Rodríguez J; Navallas J; Gila L; Rodríguez I; Malanda A
    Clin Neurophysiol; 2010 Feb; 121(2):214-20. PubMed ID: 19955017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integral characteristics of extracellular single fibre action potentials.
    Dimitrov GV; Dimitrova NA; Lateva ZC
    Electromyogr Clin Neurophysiol; 1989; 29(4):195-201. PubMed ID: 2752951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nivalin P-induced changes in muscle fiber membrane processes.
    Radicheva N; Vydevska M; Mileva K
    Methods Find Exp Clin Pharmacol; 1996 Jun; 18(5):301-8. PubMed ID: 8817464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular and extracellular action potentials in frog muscle fibre upon blocking the potassium conductivity.
    Radicheva N
    Acta Physiol Pharmacol Bulg; 1986; 12(2):35-9. PubMed ID: 2429496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the blocked inactivation of sodium channels on intracellular and extracellular action potentials from isolated frog muscle fibres.
    Radicheva N
    Acta Physiol Pharmacol Bulg; 1986; 12(3):27-31. PubMed ID: 2433894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological mechanisms responsible for the action of PAF in guinea-pig myocardium. Relation to the putative membrane signalling processes of PAF.
    Gollasch M; Ignatieva V; Kobrinsky E; Vornovitsky E; Zaborovskaya L
    J Lipid Mediat; 1991; 3(2):139-59. PubMed ID: 1797150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular potentials produced by a transition between an inactive and active regions of an excitable fibre.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1989; 29(5):265-71. PubMed ID: 2766990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.