These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20870801)

  • 1. Computational approaches toward the design of pools for the in vitro selection of complex aptamers.
    Luo X; McKeague M; Pitre S; Dumontier M; Green J; Golshani A; Derosa MC; Dehne F
    RNA; 2010 Nov; 16(11):2252-62. PubMed ID: 20870801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro RNA random pools are not structurally diverse: a computational analysis.
    Gevertz J; Gan HH; Schlick T
    RNA; 2005 Jun; 11(6):853-63. PubMed ID: 15923372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design of RNA libraries for in vitro selection of aptamers.
    Chushak YG; Martin JA; Chávez JL; Kelley-Loughnane N; Stone MO
    Methods Mol Biol; 2014; 1111():1-15. PubMed ID: 24549608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational generation and screening of RNA motifs in large nucleotide sequence pools.
    Kim N; Izzo JA; Elmetwaly S; Gan HH; Schlick T
    Nucleic Acids Res; 2010 Jul; 38(13):e139. PubMed ID: 20448026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational proposal for designing structured RNA pools for in vitro selection of RNAs.
    Kim N; Gan HH; Schlick T
    RNA; 2007 Apr; 13(4):478-92. PubMed ID: 17322501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Phenotypic Enhancement of Structured Random RNA Pools.
    Chizzolini F; Passalacqua LFM; Oumais M; Dingilian AI; Szostak JW; Lupták A
    J Am Chem Soc; 2020 Jan; 142(4):1941-1951. PubMed ID: 31887027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering human RNA aptamers by structure-based bioinformatics and genome-based in vitro selection.
    Ho B; Polanco J; Jimenez R; Lupták A
    Methods Enzymol; 2014; 549():29-46. PubMed ID: 25432743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico selection of RNA aptamers.
    Chushak Y; Stone MO
    Nucleic Acids Res; 2009 Jul; 37(12):e87. PubMed ID: 19465396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information.
    Ishida R; Adachi T; Yokota A; Yoshihara H; Aoki K; Nakamura Y; Hamada M
    Nucleic Acids Res; 2020 Aug; 48(14):e82. PubMed ID: 32537639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining SELEX and the yeast three-hybrid system for in vivo selection and classification of RNA aptamers.
    König J; Julius C; Baumann S; Homann M; Göringer HU; Feldbrügge M
    RNA; 2007 Apr; 13(4):614-22. PubMed ID: 17283213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.
    Zhou Q; Xia X; Luo Z; Liang H; Shakhnovich E
    J Chem Theory Comput; 2015 Dec; 11(12):5939-46. PubMed ID: 26642994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine Learning.
    Moussa S; Kilgour M; Jans C; Hernandez-Garcia A; Cuperlovic-Culf M; Bengio Y; Simine L
    J Phys Chem B; 2023 Jan; 127(1):62-68. PubMed ID: 36574492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex Aptamer Discovery through Apta-Seq and Its Application to ATP Aptamers Derived from Human-Genomic SELEX.
    Abdelsayed MM; Ho BT; Vu MMK; Polanco J; Spitale RC; Lupták A
    ACS Chem Biol; 2017 Aug; 12(8):2149-2156. PubMed ID: 28661647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary Structure Libraries for Artificial Evolution Experiments.
    Sgallová R; Curtis EA
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of RNA aptamers specific for the 3' X tail of HCV.
    Fukuda K; Toyokawa Y; Kikuchi K; Konno K; Ishihara R; Fukazawa C; Nishikawa S; Hasegawa T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):205-6. PubMed ID: 18776325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of RNA aptamers against SRP19 protein having sequences different from SRP RNA.
    Haraguchi Y; Kuwasako K; Muto Y; Bessho Y; Nishimoto M; Yokoyama S; Kanai A; Kawai G; Sakamoto T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):265-6. PubMed ID: 19749362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for Improving Aptamer Binding Affinity.
    Hasegawa H; Savory N; Abe K; Ikebukuro K
    Molecules; 2016 Mar; 21(4):421. PubMed ID: 27043498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic analysis of the contribution of primer sequences to aptamer structures.
    Cowperthwaite MC; Ellington AD
    J Mol Evol; 2008 Jul; 67(1):95-102. PubMed ID: 18594898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.