BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 20871602)

  • 1. Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci.
    Chittajallu R; Isaac JT
    Nat Neurosci; 2010 Oct; 13(10):1240-8. PubMed ID: 20871602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs.
    Hull C; Isaacson JS; Scanziani M
    J Neurosci; 2009 Jul; 29(28):9127-36. PubMed ID: 19605650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcircuits mediating feedforward and feedback synaptic inhibition in the piriform cortex.
    Suzuki N; Bekkers JM
    J Neurosci; 2012 Jan; 32(3):919-31. PubMed ID: 22262890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV.
    Sun QQ
    J Neurophysiol; 2009 Nov; 102(5):2955-73. PubMed ID: 19741102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Cdk5 rejuvenates inhibitory circuits and restores experience-dependent plasticity in adult visual cortex.
    Li Y; Wang L; Zhang X; Huang M; Li S; Wang X; Chen L; Jiang B; Yang Y
    Neuropharmacology; 2018 Jan; 128():207-220. PubMed ID: 29031852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel regulation of feedforward inhibition and excitation during whisker map plasticity.
    House DR; Elstrott J; Koh E; Chung J; Feldman DE
    Neuron; 2011 Dec; 72(5):819-31. PubMed ID: 22153377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.
    Cruikshank SJ; Lewis TJ; Connors BW
    Nat Neurosci; 2007 Apr; 10(4):462-8. PubMed ID: 17334362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype.
    Ma Y; Hu H; Agmon A
    J Neurosci; 2012 Jan; 32(3):983-8. PubMed ID: 22262896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic signaling to newborn neurons in dentate gyrus.
    Overstreet Wadiche L; Bromberg DA; Bensen AL; Westbrook GL
    J Neurophysiol; 2005 Dec; 94(6):4528-32. PubMed ID: 16033936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mGluR5 Exerts Cell-Autonomous Influences on the Functional and Anatomical Development of Layer IV Cortical Neurons in the Mouse Primary Somatosensory Cortex.
    Ballester-Rosado CJ; Sun H; Huang JY; Lu HC
    J Neurosci; 2016 Aug; 36(34):8802-14. PubMed ID: 27559164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period.
    Chattopadhyaya B; Di Cristo G; Higashiyama H; Knott GW; Kuhlman SJ; Welker E; Huang ZJ
    J Neurosci; 2004 Oct; 24(43):9598-611. PubMed ID: 15509747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transiently higher release probability during critical period at thalamocortical synapses in the mouse barrel cortex: relevance to differential short-term plasticity of AMPA and NMDA EPSCs and possible involvement of silent synapses.
    Yanagisawa T; Tsumoto T; Kimura F
    Eur J Neurosci; 2004 Dec; 20(11):3006-18. PubMed ID: 15579155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Thalamocortical Synaptic Transmission and Dysregulation of the Excitatory-Inhibitory Balance at the Thalamocortical Feedforward Inhibitory Microcircuit in a Genetic Mouse Model of Migraine.
    Tottene A; Favero M; Pietrobon D
    J Neurosci; 2019 Dec; 39(49):9841-9851. PubMed ID: 31645463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex.
    Daw MI; Ashby MC; Isaac JT
    Nat Neurosci; 2007 Apr; 10(4):453-61. PubMed ID: 17351636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-dependent feedforward inhibition mediated by short-term synaptic plasticity in the cerebellum.
    Bao J; Reim K; Sakaba T
    J Neurosci; 2010 Jun; 30(24):8171-9. PubMed ID: 20554867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental switch in spike timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex.
    Itami C; Kimura F
    J Neurosci; 2012 Oct; 32(43):15000-11. PubMed ID: 23100422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites.
    Connelly WM; Crunelli V; Errington AC
    J Neurosci; 2016 Mar; 36(13):3735-54. PubMed ID: 27030759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice.
    Harlow EG; Till SM; Russell TA; Wijetunge LS; Kind P; Contractor A
    Neuron; 2010 Feb; 65(3):385-98. PubMed ID: 20159451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early synapse formation in developing interneurons of the adult olfactory bulb.
    Panzanelli P; Bardy C; Nissant A; Pallotto M; Sassoè-Pognetto M; Lledo PM; Fritschy JM
    J Neurosci; 2009 Dec; 29(48):15039-52. PubMed ID: 19955355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of neuronal input transformations by tunable dendritic inhibition.
    Lovett-Barron M; Turi GF; Kaifosh P; Lee PH; Bolze F; Sun XH; Nicoud JF; Zemelman BV; Sternson SM; Losonczy A
    Nat Neurosci; 2012 Jan; 15(3):423-30, S1-3. PubMed ID: 22246433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.