These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20871935)

  • 1. Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition.
    Ngene P; van Zwienen MR; de Jongh PE
    Chem Commun (Camb); 2010 Nov; 46(43):8201-3. PubMed ID: 20871935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4.
    Ngene P; Verkuijlen MH; Zheng Q; Kragten J; van Bentum PJ; Bitter JH; de Jongh PE
    Faraday Discuss; 2011; 151():47-58; discussion 95-115. PubMed ID: 22455062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-loading LiBH
    Guo Y; Liu Y; Feng L; An C; Wang Y
    Chem Asian J; 2023 Apr; 18(7):e202300009. PubMed ID: 36811292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible hydrogen desorption from LiBH4 catalyzed by graphene supported Pt nanoparticles.
    Xu J; Qi Z; Cao J; Meng R; Gu X; Wang W; Chen Z
    Dalton Trans; 2013 Sep; 42(36):12926-33. PubMed ID: 23719649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Hydrogen Storage Properties and Reversibility of LiBH
    Zang L; Sun W; Liu S; Huang Y; Yuan H; Tao Z; Wang Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19598-19604. PubMed ID: 29786421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Low-Temperature Hydrogen Storage in Nanoporous Ni-Based Alloy Supported LiBH
    Chen X; Li Z; Zhang Y; Liu D; Wang C; Li Y; Si T; Zhang Q
    Front Chem; 2020; 8():283. PubMed ID: 32351941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reversible nanoconfined chemical reaction.
    Nielsen TK; Bösenberg U; Gosalawit R; Dornheim M; Cerenius Y; Besenbacher F; Jensen TR
    ACS Nano; 2010 Jul; 4(7):3903-8. PubMed ID: 20533850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confinement Effects for Lithium Borohydride: Comparing Silica and Carbon Scaffolds.
    Suwarno ; Ngene P; Nale A; Eggenhuisen TM; Oschatz M; Embs JP; Remhof A; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2017 Mar; 121(8):4197-4205. PubMed ID: 28286596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4.
    Adelhelm P; de Jong KP; de Jongh PE
    Chem Commun (Camb); 2009 Nov; (41):6261-3. PubMed ID: 19826688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functions of LiBH4 in the hydrogen sorption reactions of the 2LiH-Mg(NH2)2 system.
    Hu J; Weidner E; Hoelzel M; Fichtner M
    Dalton Trans; 2010 Oct; 39(38):9100-7. PubMed ID: 20733996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Unique Double-Layered Carbon Nanobowl-Confined Lithium Borohydride for Highly Reversible Hydrogen Storage.
    Wu R; Zhang X; Liu Y; Zhang L; Hu J; Gao M; Pan H
    Small; 2020 Aug; 16(32):e2001963. PubMed ID: 32613757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and reversibility of LiBH4.
    Mauron P; Buchter F; Friedrichs O; Remhof A; Bielmann M; Zwicky CN; Züttel A
    J Phys Chem B; 2008 Jan; 112(3):906-10. PubMed ID: 18088111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel catalytic effects of fullerene for LiBH4 hydrogen uptake and release.
    Wellons MS; Berseth PA; Zidan R
    Nanotechnology; 2009 May; 20(20):204022. PubMed ID: 19420670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2.
    Jia Y; Sun C; Cheng L; Abdul Wahab M; Cui J; Zou J; Zhu M; Yao X
    Phys Chem Chem Phys; 2013 Apr; 15(16):5814-20. PubMed ID: 23487042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Al on the hydrogen sorption mechanism of LiBH(4).
    Friedrichs O; Kim JW; Remhof A; Buchter F; Borgschulte A; Wallacher D; Cho YW; Fichtner M; Oh KH; Züttel A
    Phys Chem Chem Phys; 2009 Mar; 11(10):1515-20. PubMed ID: 19240928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural characterization and H(2) sorption properties of carbon-supported Mg(1-x)Nix nanocrystallites.
    Bogerd R; Adelhelm P; Meeldijk JH; de Jong KP; de Jongh PE
    Nanotechnology; 2009 May; 20(20):204019. PubMed ID: 19420667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen storage in ni nanoparticle-dispersed multiwalled carbon nanotubes.
    Kim HS; Lee H; Han KS; Kim JH; Song MS; Park MS; Lee JY; Kang JK
    J Phys Chem B; 2005 May; 109(18):8983-6. PubMed ID: 16852070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the surface oxidation of LiBH(4) on the hydrogen desorption mechanism.
    Kato S; Bielmann M; Borgschulte A; Zakaznova-Herzog V; Remhof A; Orimo S; Züttel A
    Phys Chem Chem Phys; 2010 Sep; 12(36):10950-5. PubMed ID: 20657909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced catalytic dehydrogenation of LiBH(4) by carbon-supported Pd nanoparticles.
    Xu J; Yu X; Ni J; Zou Z; Li Z; Yang H
    Dalton Trans; 2009 Oct; (39):8386-91. PubMed ID: 19789792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement of Mg-MgH2 systems into carbon nanotubes changes hydrogen sorption energetics.
    Liang JJ; Kung WC
    J Phys Chem B; 2005 Sep; 109(38):17837-41. PubMed ID: 16853287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.