These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 2087199)
1. Isolation and characterization of carbon catabolite repression mutants in Saccharomyces cerevisiae. Donnini C; Goffrini P; Rossi C; Ferrero I Microbiologica; 1990 Oct; 13(4):283-95. PubMed ID: 2087199 [TBL] [Abstract][Full Text] [Related]
2. Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae. Lodi T; Donnini C; Ferrero I J Gen Microbiol; 1991 May; 137(5):1039-44. PubMed ID: 1865178 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial NAD, L-lactate dehydrogenase and NAD, D-lactate dehydrogenase in the yeast Saccharomyces cerevisiae. Genga AM; Tassi F; Lodi T; Ferrero I Microbiologica; 1983 Jan; 6(1):1-8. PubMed ID: 6341778 [TBL] [Abstract][Full Text] [Related]
4. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures. Aon MA; Cortassa S Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Ciriacy M Mol Gen Genet; 1977 Jul; 154(2):213-20. PubMed ID: 197391 [TBL] [Abstract][Full Text] [Related]
6. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae. Belinchón MM; Gancedo JM Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310 [TBL] [Abstract][Full Text] [Related]
7. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression. Mónaco ME; Valdecantos PA; Aon MA Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720 [TBL] [Abstract][Full Text] [Related]
8. Yeast mutants of glucose metabolism with defects in the coordinate regulation of carbon assimilation. Dennis RA; Rhodey M; McCammon MT Arch Biochem Biophys; 1999 May; 365(2):279-88. PubMed ID: 10328823 [TBL] [Abstract][Full Text] [Related]
9. Studies on cytochrome b2 synthesis in Saccharomyces cerevisiae. Pachecka J; Putrament A Acta Microbiol Pol A; 1975; 7(4):189-99. PubMed ID: 1108602 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Raghevendran V; Gombert AK; Christensen B; Kötter P; Nielsen J Yeast; 2004 Jul; 21(9):769-79. PubMed ID: 15282800 [TBL] [Abstract][Full Text] [Related]
12. Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Lodi T; O'Connor D; Goffrini P; Ferrero I Mol Gen Genet; 1994 Sep; 244(6):622-9. PubMed ID: 7969031 [TBL] [Abstract][Full Text] [Related]
13. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae. Cao H; Yue M; Li S; Bai X; Zhao X; Du Y Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771 [TBL] [Abstract][Full Text] [Related]
14. Derepression in Saccharomyces cerevisiae can be dissociated from cellular proliferation and deoxyribonucleic acid synthesis. Mahler HR; Assimos K; Lin CC J Bacteriol; 1975 Aug; 123(2):637-41. PubMed ID: 1099068 [TBL] [Abstract][Full Text] [Related]
15. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process. Zimmermann FK; Kaufmann I; Rasenberger H; Haubetamann P Mol Gen Genet; 1977 Feb; 151(1):95-103. PubMed ID: 194140 [TBL] [Abstract][Full Text] [Related]
16. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Zimmermann FK; Scheel I Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390 [TBL] [Abstract][Full Text] [Related]
17. Mutations releasing mitochondrial biogenesis from glucose repression in Saccharomyces cerevisiae. Böker-Schmitt E; Francisci S; Schweyen RJ J Bacteriol; 1982 Jul; 151(1):303-10. PubMed ID: 7045078 [TBL] [Abstract][Full Text] [Related]
18. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995 [TBL] [Abstract][Full Text] [Related]
19. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. Entian KD; Fröhlich KU J Bacteriol; 1984 Apr; 158(1):29-35. PubMed ID: 6370959 [TBL] [Abstract][Full Text] [Related]
20. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements. Roth S; Schüller HJ Yeast; 2001 Jan; 18(2):151-62. PubMed ID: 11169757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]