These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 20872268)
1. Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants. Muthuswamy S; Meier I Planta; 2011 Jan; 233(1):201-8. PubMed ID: 20872268 [TBL] [Abstract][Full Text] [Related]
2. NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Xu XM; Rose A; Muthuswamy S; Jeong SY; Venkatakrishnan S; Zhao Q; Meier I Plant Cell; 2007 May; 19(5):1537-48. PubMed ID: 17513499 [TBL] [Abstract][Full Text] [Related]
3. Quantitative proteomics reveals factors regulating RNA biology as dynamic targets of stress-induced SUMOylation in Arabidopsis. Miller MJ; Scalf M; Rytz TC; Hubler SL; Smith LM; Vierstra RD Mol Cell Proteomics; 2013 Feb; 12(2):449-63. PubMed ID: 23197790 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Miller MJ; Barrett-Wilt GA; Hua Z; Vierstra RD Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16512-7. PubMed ID: 20813957 [TBL] [Abstract][Full Text] [Related]
7. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity. Lin XL; Niu D; Hu ZL; Kim DH; Jin YH; Cai B; Liu P; Miura K; Yun DJ; Kim WY; Lin R; Jin JB PLoS Genet; 2016 Apr; 12(4):e1006016. PubMed ID: 27128446 [TBL] [Abstract][Full Text] [Related]
8. SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. Rytz TC; Miller MJ; McLoughlin F; Augustine RC; Marshall RS; Juan YT; Charng YY; Scalf M; Smith LM; Vierstra RD Plant Cell; 2018 May; 30(5):1077-1099. PubMed ID: 29588388 [TBL] [Abstract][Full Text] [Related]
10. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry. Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783 [TBL] [Abstract][Full Text] [Related]
11. mRNA export and sumoylation-Lessons from plants. Meier I Biochim Biophys Acta; 2012 Jun; 1819(6):531-7. PubMed ID: 22306659 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Park HC; Kim H; Koo SC; Park HJ; Cheong MS; Hong H; Baek D; Chung WS; Kim DH; Bressan RA; Lee SY; Bohnert HJ; Yun DJ Plant Cell Environ; 2010 Nov; 33(11):1923-34. PubMed ID: 20561251 [TBL] [Abstract][Full Text] [Related]
13. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Saitoh N; Uchimura Y; Tachibana T; Sugahara S; Saitoh H; Nakao M Exp Cell Res; 2006 May; 312(8):1418-30. PubMed ID: 16688858 [TBL] [Abstract][Full Text] [Related]
14. Human Regulatory Protein Ki-1/57 Is a Target of SUMOylation and Affects PML Nuclear Body Formation. Saito Â; Souza EE; Costa FC; Meirelles GV; Gonçalves KA; Santos MT; Bressan GC; McComb ME; Costello CE; Whelan SA; Kobarg J J Proteome Res; 2017 Sep; 16(9):3147-3157. PubMed ID: 28695742 [TBL] [Abstract][Full Text] [Related]