BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20872610)

  • 1. Microfluidic chip-capillary electrophoresis for two orders extension of adjustable upper working range for profiling of inorganic and organic anions in urine.
    Guo WP; Lau KM; Fung YS
    Electrophoresis; 2010 Sep; 31(18):3044-52. PubMed ID: 20872610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic chip-capillary electrophoresis with dynamic multi-segment standard addition for rapidly identifying nephrolithiasis markers in urine.
    Guo WP; Fung YS
    Electrophoresis; 2011 Nov; 32(23):3437-45. PubMed ID: 22134981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic chip capillary electrophoresis coupled with electrochemiluminescence for enantioseparation of racemic drugs using central composite design optimization.
    Guo WP; Rong ZB; Li YH; Fung YS; Gao GQ; Cai ZM
    Electrophoresis; 2013 Nov; 34(20-21):2962-9. PubMed ID: 24037989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin.
    Nie Z; Fung YS
    Electrophoresis; 2008 May; 29(9):1924-31. PubMed ID: 18393342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-D t-ITP/CZE determination of clinical urinary proteins using a microfluidic-chip capillary electrophoresis device.
    Wu R; Yeung WS; Fung YS
    Electrophoresis; 2011 Nov; 32(23):3406-14. PubMed ID: 22134979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and performance of a three-dimensionally adjustable device for the amperometric detection of microchip capillary electrophoresis.
    Chen G; Bao H; Yang P
    Electrophoresis; 2005 Dec; 26(24):4632-40. PubMed ID: 16278910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE.
    He QH; Fang Q; Du WB; Fang ZL
    Electrophoresis; 2007 Aug; 28(16):2912-9. PubMed ID: 17640089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-dimension microchip-capillary electrophoresis device for determination of functional proteins in infant milk formula.
    Wu R; Wang Z; Zhao W; Yeung WS; Fung YS
    J Chromatogr A; 2013 Aug; 1304():220-6. PubMed ID: 23870546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis.
    Nuchtavorn N; Smejkal P; Breadmore MC; Guijt RM; Doble P; Bek F; Foret F; Suntornsuk L; Macka M
    J Chromatogr A; 2013 Apr; 1286():216-21. PubMed ID: 23510955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of CE methods for global metabolic profiling of urine.
    Ramautar R; ToraƱo JS; Somsen GW; de Jong GJ
    Electrophoresis; 2010 Jul; 31(14):2319-27. PubMed ID: 20564266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a new hybrid technique for rapid speciation analysis by directly interfacing a microfluidic chip-based capillary electrophoresis system to atomic fluorescence spectrometry.
    Li F; Wang DD; Yan XP; Lin JM; Su RG
    Electrophoresis; 2005 Jun; 26(11):2261-8. PubMed ID: 15832297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-sensitivity capillary electrophoresis determination of inorganic anions in serum and urine using on-line preconcentration by transient isotachophoresis.
    Hirokawa T; Yoshioka M; Okamoto H; Timerbaev AR; Blaschke G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Nov; 811(2):165-70. PubMed ID: 15522716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of oxoanions in river water by capillary electrophoresis.
    Fung YS; Lau KM
    Electrophoresis; 2001 Jul; 22(11):2251-9. PubMed ID: 11504060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel separation of multiple samples with negative pressure sample injection on a 3-D microfluidic array chip.
    Zhang L; Yin X
    Electrophoresis; 2007 Apr; 28(8):1281-8. PubMed ID: 17366485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microchip CE analysis of amino acids on a titanium dioxide nanoparticles-coated PDMS microfluidic device with in-channel indirect amperometric detection.
    Qiu JD; Wang L; Liang RP; Wang JW
    Electrophoresis; 2009 Oct; 30(19):3472-9. PubMed ID: 19757433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique.
    Zhang L; Yin XF
    J Chromatogr A; 2006 Dec; 1137(2):243-8. PubMed ID: 17055523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary electrophoresis-time of flight-mass spectrometry using noncovalently bilayer-coated capillaries for the analysis of amino acids in human urine.
    Ramautar R; Mayboroda OA; Derks RJ; van Nieuwkoop C; van Dissel JT; Somsen GW; Deelder AM; de Jong GJ
    Electrophoresis; 2008 Jun; 29(12):2714-22. PubMed ID: 18494035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode array detector for microchip capillary electrophoresis.
    Holcomb RE; Kraly JR; Henry CS
    Analyst; 2009 Mar; 134(3):486-92. PubMed ID: 19238284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.