These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20872850)

  • 1. Validating and improving elastic network models with molecular dynamics simulations.
    Romo TD; Grossfield A
    Proteins; 2011 Jan; 79(1):23-34. PubMed ID: 20872850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR.
    Latek D; Kolinski M; Ghoshdastider U; Debinski A; Bombolewski R; Plazinska A; Jozwiak K; Filipek S
    J Mol Model; 2011 Sep; 17(9):2353-66. PubMed ID: 21365223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments.
    Pinamonti G; Bottaro S; Micheletti C; Bussi G
    Nucleic Acids Res; 2015 Sep; 43(15):7260-9. PubMed ID: 26187990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs.
    Han DS; Wang SX; Weinstein H
    Biochemistry; 2008 Jul; 47(28):7317-21. PubMed ID: 18558776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale design of coarse-grained elastic network-based potentials for the μ opioid receptor.
    Fossépré M; Leherte L; Laaksonen A; Vercauteren DP
    J Mol Model; 2016 Sep; 22(9):227. PubMed ID: 27566318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions.
    Fuglebakk E; Reuter N; Hinsen K
    J Chem Theory Comput; 2013 Dec; 9(12):5618-28. PubMed ID: 26592296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic network models capture the motions apparent within ensembles of RNA structures.
    Zimmermann MT; Jernigan RL
    RNA; 2014 Jun; 20(6):792-804. PubMed ID: 24759093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond rhodopsin: G protein-coupled receptor structure and modeling incorporating the beta2-adrenergic and adenosine A(2A) crystal structures.
    Tebben AJ; Schnur DM
    Methods Mol Biol; 2011; 672():359-86. PubMed ID: 20838977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based simulations reveal concerted dynamics of GPCR activation.
    Leioatts N; Suresh P; Romo TD; Grossfield A
    Proteins; 2014 Oct; 82(10):2538-51. PubMed ID: 24889093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations.
    Sgourakis NG; Garcia AE
    J Mol Biol; 2010 Apr; 398(1):161-73. PubMed ID: 20184892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin.
    Grossfield A; Pitman MC; Feller SE; Soubias O; Gawrisch K
    J Mol Biol; 2008 Aug; 381(2):478-86. PubMed ID: 18585736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the possible conformations of the extracellular loops in G-protein-coupled receptors.
    Nikiforovich GV; Taylor CM; Marshall GR; Baranski TJ
    Proteins; 2010 Feb; 78(2):271-85. PubMed ID: 19731375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
    Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K
    FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence of molecular dynamics simulations of membrane proteins.
    Grossfield A; Feller SE; Pitman MC
    Proteins; 2007 Apr; 67(1):31-40. PubMed ID: 17243153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic Network Models are Robust to Variations in Formalism.
    Leioatts N; Romo TD; Grossfield A
    J Chem Theory Comput; 2012 Jul; 8(7):2424-2434. PubMed ID: 22924033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the ghrelin receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR).
    Floquet N; M'Kadmi C; Perahia D; Gagne D; Bergé G; Marie J; Banères JL; Galleyrand JC; Fehrentz JA; Martinez J
    J Mol Biol; 2010 Jan; 395(4):769-84. PubMed ID: 19782690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of motions in membrane proteins by elastic network models and their experimental validation.
    Isin B; Tirupula KC; Oltvai ZN; Klein-Seetharaman J; Bahar I
    Methods Mol Biol; 2012; 914():285-317. PubMed ID: 22976035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.
    Mnpotra JS; Qiao Z; Cai J; Lynch DL; Grossfield A; Leioatts N; Hurst DP; Pitman MC; Song ZH; Reggio PH
    J Biol Chem; 2014 Jul; 289(29):20259-72. PubMed ID: 24855641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics.
    Romo TD; Grossfield A; Pitman MC
    Biophys J; 2010 Jan; 98(1):76-84. PubMed ID: 20074514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.