These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20872850)

  • 21. Identification of motions in membrane proteins by elastic network models and their experimental validation.
    Isin B; Tirupula KC; Oltvai ZN; Klein-Seetharaman J; Bahar I
    Methods Mol Biol; 2012; 914():285-317. PubMed ID: 22976035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.
    Mnpotra JS; Qiao Z; Cai J; Lynch DL; Grossfield A; Leioatts N; Hurst DP; Pitman MC; Song ZH; Reggio PH
    J Biol Chem; 2014 Jul; 289(29):20259-72. PubMed ID: 24855641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics.
    Romo TD; Grossfield A; Pitman MC
    Biophys J; 2010 Jan; 98(1):76-84. PubMed ID: 20074514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Successful prediction of the intra- and extracellular loops of four G-protein-coupled receptors.
    Goldfeld DA; Zhu K; Beuming T; Friesner RA
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8275-80. PubMed ID: 21536915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulations of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics.
    Tikhonova IG; Selvam B; Ivetac A; Wereszczynski J; McCammon JA
    Biochemistry; 2013 Aug; 52(33):5593-603. PubMed ID: 23879802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Putative active states of a prototypic g-protein-coupled receptor from biased molecular dynamics.
    Provasi D; Filizola M
    Biophys J; 2010 May; 98(10):2347-55. PubMed ID: 20483344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. G protein coupled receptor structure and activation.
    Kobilka BK
    Biochim Biophys Acta; 2007 Apr; 1768(4):794-807. PubMed ID: 17188232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway.
    Yuan S; Filipek S; Palczewski K; Vogel H
    Nat Commun; 2014 Sep; 5():4733. PubMed ID: 25203160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure network analysis to gain insights into GPCR function.
    Fanelli F; Felline A; Raimondi F; Seeber M
    Biochem Soc Trans; 2016 Apr; 44(2):613-8. PubMed ID: 27068978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of interfaces for oligomerizations of G-protein coupled receptors.
    Nemoto W; Toh H
    Proteins; 2005 Feb; 58(3):644-60. PubMed ID: 15593372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
    Goetz A; Lanig H; Gmeiner P; Clark T
    J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function.
    Deupi X; Kobilka BK
    Physiology (Bethesda); 2010 Oct; 25(5):293-303. PubMed ID: 20940434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Position of transmembrane helix 6 determines receptor G protein coupling specificity.
    Rose AS; Elgeti M; Zachariae U; Grubmüller H; Hofmann KP; Scheerer P; Hildebrand PW
    J Am Chem Soc; 2014 Aug; 136(32):11244-7. PubMed ID: 25046433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis.
    Durdagi S; Papadopoulos MG; Zoumpoulakis PG; Koukoulitsa C; Mavromoustakos T
    Mol Divers; 2010 May; 14(2):257-76. PubMed ID: 19536636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations.
    Dror RO; Arlow DH; Borhani DW; Jensen MØ; Piana S; Shaw DE
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4689-94. PubMed ID: 19258456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparisons of Protein Dynamics from Experimental Structure Ensembles, Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models.
    Sankar K; Mishra SK; Jernigan RL
    J Phys Chem B; 2018 May; 122(21):5409-5417. PubMed ID: 29376347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of structural distortions in the transmembrane helices of GPCRs.
    Deupi X
    Methods Mol Biol; 2012; 914():219-35. PubMed ID: 22976031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion.
    Stember JN; Wriggers W
    J Chem Phys; 2009 Aug; 131(7):074112. PubMed ID: 19708737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.