These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 20873572)
1. [General retention time formulae for gradient liquid chromatography with any combination of isocratic, linear and stepwise gradients]. Hao W; Di B; Yang Y; Chen Q; Wang J Se Pu; 2010 Jun; 28(6):541-6. PubMed ID: 20873572 [TBL] [Abstract][Full Text] [Related]
2. Study of the peak variance in isocratic and gradient liquid chromatography using the transport model. Hao W; Di B; Chen Q; Wang J; Yang Y; Sun X J Chromatogr A; 2013 Jun; 1295():67-81. PubMed ID: 23669328 [TBL] [Abstract][Full Text] [Related]
3. Development of an ion chromatographic gradient retention model from isocratic elution experiments. Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028 [TBL] [Abstract][Full Text] [Related]
4. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation. Gritti F J Chromatogr A; 2016 Nov; 1473():38-47. PubMed ID: 27814914 [TBL] [Abstract][Full Text] [Related]
5. General theory of peak compression in liquid chromatography. Gritti F J Chromatogr A; 2016 Feb; 1433():114-22. PubMed ID: 26805599 [TBL] [Abstract][Full Text] [Related]
6. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography. Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430 [TBL] [Abstract][Full Text] [Related]
7. Analytical solutions of the ideal model for gradient liquid chromatography. Hao W; Zhang X; Hou K Anal Chem; 2006 Nov; 78(22):7828-40. PubMed ID: 17105177 [TBL] [Abstract][Full Text] [Related]
8. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography. Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027 [TBL] [Abstract][Full Text] [Related]
9. Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions. Schoenmakers P; Fitzpatrick F; Grothey R J Chromatogr A; 2002 Aug; 965(1-2):93-107. PubMed ID: 12236541 [TBL] [Abstract][Full Text] [Related]
10. Enhancement in the computation of gradient retention times in liquid chromatography using root-finding methods. López-Ureña S; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2019 Aug; 1600():137-147. PubMed ID: 31056274 [TBL] [Abstract][Full Text] [Related]
11. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature. Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773 [TBL] [Abstract][Full Text] [Related]
12. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140 [TBL] [Abstract][Full Text] [Related]
13. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography. Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677 [TBL] [Abstract][Full Text] [Related]
14. Utility of linear and nonlinear models for retention prediction in liquid chromatography. Gilar M; Hill J; McDonald TS; Gritti F J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355 [TBL] [Abstract][Full Text] [Related]
15. The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution. Werres T; Schmidt TC; Teutenberg T J Chromatogr A; 2021 Mar; 1641():461965. PubMed ID: 33611125 [TBL] [Abstract][Full Text] [Related]
16. Optimisation of gradient elution with serially-coupled columns Part II: Multi-linear gradients. Ortiz-Bolsico C; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2014 Dec; 1373():51-60. PubMed ID: 25465000 [TBL] [Abstract][Full Text] [Related]
17. New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2005 Mar; 1068(2):279-87. PubMed ID: 15830934 [TBL] [Abstract][Full Text] [Related]
18. Accuracy of retention model parameters obtained from retention data in liquid chromatography. Brau T; Pirok B; Rutan S; Stoll D J Sep Sci; 2022 Sep; 45(17):3241-3255. PubMed ID: 35304809 [TBL] [Abstract][Full Text] [Related]
19. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients. Jeong LN; Rutan SC J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121 [TBL] [Abstract][Full Text] [Related]
20. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]