These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20873572)

  • 21. Overloaded gradient elution chromatography on heterogeneous adsorbents in reversed-phase liquid chromatography.
    Gritti F; Felinger A; Guiochon G
    J Chromatogr A; 2003 Oct; 1017(1-2):45-61. PubMed ID: 14584690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing HIC method development: Retention-time modeling and tuning selectivity with ternary mobile-phase systems.
    Ewonde Ewonde R; Molenaar SRA; Broeckhoven K; Eeltink S
    J Chromatogr A; 2024 Aug; 1730():465133. PubMed ID: 38996515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A; Papachristos K
    J Chromatogr A; 2004 Apr; 1033(2):283-9. PubMed ID: 15088749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limits of multi-linear gradient optimisation in reversed-phase liquid chromatography.
    Concha-Herrera V; Vivó-Truyols G; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2005 Jan; 1063(1-2):79-88. PubMed ID: 15700459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Testing experimental designs in liquid chromatography (I): Development and validation of a method for the comprehensive inspection of experimental designs.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Aug; 1624():461180. PubMed ID: 32540058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Error analysis and performance of different retention models in the transference of data from/to isocratic/gradient elution.
    Vivó-Truyols G; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2003 Nov; 1018(2):169-81. PubMed ID: 14620568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peak width in liquid chromatography with exponential retention and linear program preceded by isocratic hold.
    Blumberg LM
    J Chromatogr A; 2023 Jun; 1699():464019. PubMed ID: 37119711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in process chromatography gradient elution using binary linear gradients.
    Natarajan V; Purdom G
    J Chromatogr A; 2001 Jan; 908(1-2):163-7. PubMed ID: 11218118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization.
    Tarafder A; Aumann L; Müller-Späth T; Morbidelli M
    J Chromatogr A; 2007 Oct; 1167(1):42-53. PubMed ID: 17765250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships.
    Li J; Cai B
    J Chromatogr A; 2001 Jan; 905(1-2):35-46. PubMed ID: 11206804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation.
    Schellinger AP; Carr PW
    J Chromatogr A; 2006 Mar; 1109(2):253-66. PubMed ID: 16460742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Method for characterization of selectivity in reversed-phase liquid chromatography. III. Retention behaviour in gradient-elution chromatography: application to the chromatography of pesticide compounds.
    Jandera P; Spacek M
    J Chromatogr; 1986 Sep; 366():107-26. PubMed ID: 3782316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of gradient elution conditions in multicomponent preparative liquid chromatography.
    Shan Y; Seidel-Morgenstern A
    J Chromatogr A; 2005 Nov; 1093(1-2):47-58. PubMed ID: 16233870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns.
    Jandera P; Hájek T
    J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The bandwidth in gradient elution chromatography with a retained organic modifier.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Mar; 1145(1-2):67-82. PubMed ID: 17280680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques.
    Pirok BWJ; Molenaar SRA; van Outersterp RE; Schoenmakers PJ
    J Chromatogr A; 2017 Dec; 1530():104-111. PubMed ID: 29146427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effects of peak compression in gradient elution of liquid chromatography].
    Hao W; Liu L; Shen Q
    Se Pu; 2021 Jan; 39(1):10-14. PubMed ID: 34227354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins.
    Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S
    J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reducing the influence of geometry-induced gradient deformation in liquid chromatographic retention modelling.
    Bos TS; Niezen LE; den Uijl MJ; Molenaar SRA; Lege S; Schoenmakers PJ; Somsen GW; Pirok BWJ
    J Chromatogr A; 2021 Jan; 1635():461714. PubMed ID: 33264699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.