These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 20873572)
41. Influence of the pre-elution of solute in initial mobile phase on retention time and peak compression under linear gradient elution. Hao W; Wang K; Yue B; Chen Q; Huang Y; Yu J; Li D J Chromatogr A; 2020 May; 1618():460858. PubMed ID: 31954543 [TBL] [Abstract][Full Text] [Related]
42. Peak compression in linear gradient elution liquid chromatography. Hao W; Wang K; Yue B; Chen Q; Huang Y; Yu J; Li D J Chromatogr A; 2020 May; 1619():460908. PubMed ID: 32005528 [TBL] [Abstract][Full Text] [Related]
43. Estimation of peak capacity based on peak simulation. Navarro-Huerta JA; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2018 Nov; 1574():101-113. PubMed ID: 30220426 [TBL] [Abstract][Full Text] [Related]
44. Exact peak compression factor in linear gradient elution. I. Theory. Gritti F; Guiochon G J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548 [TBL] [Abstract][Full Text] [Related]
45. Theoretical comparison of the performance of gradient elution chromatography at constant pressure and constant flow rate. Gritti F; Guiochon G J Chromatogr A; 2012 Aug; 1253():71-82. PubMed ID: 22818736 [TBL] [Abstract][Full Text] [Related]
46. Some insights on the description of gradient elution in reversed-phase liquid chromatography. Baeza-Baeza JJ; García-Álvarez-Coque MC J Sep Sci; 2014 Sep; 37(17):2269-77. PubMed ID: 24945785 [TBL] [Abstract][Full Text] [Related]
47. Application of the reversed-phase liquid chromatographic model to describe the retention behaviour of polydisperse macromolecules in gradient and isocratic liquid chromatography. Fitzpatrick F; Edam R; Schoenmakers P J Chromatogr A; 2003 Feb; 988(1):53-67. PubMed ID: 12647821 [TBL] [Abstract][Full Text] [Related]
48. Development of dual gradient column in liquid chromatography. Oda T; Kitagawa S; Ohtani H J Chromatogr A; 2006 Feb; 1105(1-2):154-8. PubMed ID: 16185701 [TBL] [Abstract][Full Text] [Related]
49. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents. Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210 [TBL] [Abstract][Full Text] [Related]
50. Modeling of overloaded gradient elution of nociceptin/orphanin FQ in reversed-phase liquid chromatography. Marchetti N; Dondi F; Felinger A; Guerrini R; Salvadori S; Cavazzini A J Chromatogr A; 2005 Jun; 1079(1-2):162-72. PubMed ID: 16038302 [TBL] [Abstract][Full Text] [Related]
52. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation. Liang C; Qiao JQ; Lian HZ J Chromatogr A; 2017 Dec; 1528():25-34. PubMed ID: 29103597 [TBL] [Abstract][Full Text] [Related]
53. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm. De Beer M; Lynen F; Chen K; Ferguson P; Hanna-Brown M; Sandra P Anal Chem; 2010 Mar; 82(5):1733-43. PubMed ID: 20146446 [TBL] [Abstract][Full Text] [Related]
54. Column equilibration effects in gradient elution in reversed-phase liquid chromatography. Pappa-Louisi A; Nikitas P; Agrafiotou P J Chromatogr A; 2006 Sep; 1127(1-2):97-107. PubMed ID: 16797559 [TBL] [Abstract][Full Text] [Related]
55. Study of the column efficiency using gradient elution based on Van Deemter plots. Alvarez-Segura T; Cabo-Calvet E; Baeza-Baeza JJ; García-Alvarez-Coque MC J Chromatogr A; 2019 Jan; 1584():126-134. PubMed ID: 30497827 [TBL] [Abstract][Full Text] [Related]
56. Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography. Groskreutz SR; Weber SG Anal Chem; 2016 Dec; 88(23):11742-11749. PubMed ID: 27790917 [TBL] [Abstract][Full Text] [Related]
57. Testing experimental designs in liquid chromatography (II): Influence of the design geometry on the prediction performance of retention models. Gisbert-Alonso A; Navarro-Huerta JA; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2021 Sep; 1654():462458. PubMed ID: 34399141 [TBL] [Abstract][Full Text] [Related]
59. Possibilities of retention prediction in fast gradient liquid chromatography. Part 1: Comparison of separation on packed fully porous, nonporous and monolithic columns. Vyňuchalová K; Jandera P J Chromatogr A; 2013 Feb; 1278():37-45. PubMed ID: 23336942 [TBL] [Abstract][Full Text] [Related]
60. Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography II: the competitive case. Åsberg D; Leśko M; Enmark M; Samuelsson J; Kaczmarski K; Fornstedt T J Chromatogr A; 2013 Nov; 1314():70-6. PubMed ID: 24050597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]