BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20873726)

  • 1. Sticking polydisperse hydrophobic magnetite nanoparticles to lipid membranes.
    Paulus M; Degen P; Brenner T; Tiemeyer S; Struth B; Tolan M; Rehage H
    Langmuir; 2010 Oct; 26(20):15945-7. PubMed ID: 20873726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolayer/bilayer transition in Langmuir films of derivatized gold nanoparticles at the gas/water interface: an x-ray scattering study.
    Fukuto M; Heilmann RK; Pershan PS; Badia A; Lennox RB
    J Chem Phys; 2004 Feb; 120(7):3446-59. PubMed ID: 15268502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of iron by decarboxylation in the formation of magnetite nanoparticles.
    Pérez N; López-Calahorra F; Labarta A; Batlle X
    Phys Chem Chem Phys; 2011 Nov; 13(43):19485-9. PubMed ID: 21960123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate.
    Zhang M; Pan G; Zhao D; He G
    Environ Pollut; 2011 Dec; 159(12):3509-14. PubMed ID: 21890253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles.
    Hsieh S; Huang BY; Hsieh SL; Wu CC; Wu CH; Lin PY; Huang YS; Chang CW
    Nanotechnology; 2010 Nov; 21(44):445601. PubMed ID: 20935349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles.
    Zaloga J; Feoktystov A; Garamus VM; Karawacka W; Ioffe A; Brückel T; Tietze R; Alexiou C; Lyer S
    Colloids Surf B Biointerfaces; 2018 Jan; 161():18-26. PubMed ID: 29035747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observation of gamma-Fe2O3 nanoparticle adsorption under different monolayers at the air/water interface.
    Degen P; Paulus M; Maas M; Kahner R; Schmacke S; Struth B; Tolan M; Rehage H
    Langmuir; 2008 Nov; 24(22):12958-62. PubMed ID: 18850729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica nanoparticles at interfaces modulated by amphiphilic polymer and surfactant.
    Alves de Rezende C; Lee LT; Galembeck F
    Langmuir; 2008 Jul; 24(14):7346-53. PubMed ID: 18547078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity.
    Vermisoglou EC; Pilatos G; Romanos GE; Devlin E; Kanellopoulos NK; Karanikolos GN
    Nanotechnology; 2011 Sep; 22(35):355602. PubMed ID: 21817779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR studies into colloidal stability and magnetic order in fatty acid stabilised aqueous magnetic fluids.
    Ghosh S; Carty D; Clarke SP; Corr SA; Tekoriute R; Gun'ko YK; Brougham DF
    Phys Chem Chem Phys; 2010 Nov; 12(42):14009-16. PubMed ID: 20922236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of nanoparticles at the solid-liquid interface.
    Brenner T; Paulus M; Schroer MA; Tiemeyer S; Sternemann C; Möller J; Tolan M; Degen P; Rehage H
    J Colloid Interface Sci; 2012 May; 374(1):287-90. PubMed ID: 22386203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of azacrown ether with fatty acid in nonpolar solvents and at the organic-aqueous interface.
    Wojciechowski K; Buffle J
    Biosens Bioelectron; 2004 Dec; 20(6):1051-9. PubMed ID: 15556348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water dispersal and functionalization of hydrophobic iron oxide nanoparticles with lipid-modified poly(amidoamine) dendrimers.
    Boni A; Albertazzi L; Innocenti C; Gemmi M; Bifone A
    Langmuir; 2013 Sep; 29(35):10973-9. PubMed ID: 23721318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical organization of poly(ethylene oxide)-block-poly(isobutylene) and hydrophobically modified Fe(2)O(3) nanoparticles at the air/water interface and on solid supports.
    Li H; Sachsenhofer R; Binder WH; Henze T; Thurn-Albrecht T; Busse K; Kressler J
    Langmuir; 2009 Jul; 25(14):8320-9. PubMed ID: 19441824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-surface activity and micellization of ionic amphiphilic diblock copolymers in water. Hydrophobic chain length dependence and salt effect on surface activity and the critical micelle concentration.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2005 Oct; 21(22):9938-45. PubMed ID: 16229512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphiphilic invertible polymers for adsolubilization on hydrophilic and hydrophobized silica nanoparticles.
    Sieburg L; Kohut A; Kislenko V; Voronov A
    J Colloid Interface Sci; 2010 Nov; 351(1):116-21. PubMed ID: 20716453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the stability of surface nanobubbles.
    Wang S; Liu M; Dong Y
    J Phys Condens Matter; 2013 May; 25(18):184007. PubMed ID: 23598863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure study of liposomes decorated by hydrophobic magnetic nanoparticles.
    Qiu D; An X; Chen Z; Ma X
    Chem Phys Lipids; 2012 Jul; 165(5):563-70. PubMed ID: 22728111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.