These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Drop motion induced by repeated stretching and relaxation on a gradient surface with hysteresis. Longley JE; Dooley E; Givler DM; Napier WJ; Chaudhury MK; Daniel S Langmuir; 2012 Oct; 28(39):13912-8. PubMed ID: 22950893 [TBL] [Abstract][Full Text] [Related]
23. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. Fang G; Li W; Wang X; Qiao G Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770 [TBL] [Abstract][Full Text] [Related]
24. A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces. Lai YH; Yang JT; Shieh DB Lab Chip; 2010 Feb; 10(4):499-504. PubMed ID: 20126691 [TBL] [Abstract][Full Text] [Related]
25. Dynamics of Growth and Breakup of Viscous Pendant Drops into Air. Zhang X J Colloid Interface Sci; 1999 Apr; 212(1):107-122. PubMed ID: 10072280 [TBL] [Abstract][Full Text] [Related]
26. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient. Banuprasad TN; Vinay TV; Subash CK; Varghese S; George SD; Varanakkottu SN ACS Appl Mater Interfaces; 2017 Aug; 9(33):28046-28054. PubMed ID: 28750164 [TBL] [Abstract][Full Text] [Related]
27. Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study. Joshi AS; Sun Y Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041401. PubMed ID: 21230271 [TBL] [Abstract][Full Text] [Related]
28. Controlled directional water-droplet spreading on a high-adhesion surface. Feng S; Wang S; Gao L; Li G; Hou Y; Zheng Y Angew Chem Int Ed Engl; 2014 Jun; 53(24):6163-7. PubMed ID: 24821428 [TBL] [Abstract][Full Text] [Related]
29. Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment. Sefiane K J Colloid Interface Sci; 2004 Apr; 272(2):411-9. PubMed ID: 15028506 [TBL] [Abstract][Full Text] [Related]
30. Thermocapillary motion of a liquid drop on a horizontal solid surface. Pratap V; Moumen N; Subramanian RS Langmuir; 2008 May; 24(9):5185-93. PubMed ID: 18399689 [TBL] [Abstract][Full Text] [Related]
31. Picoliter water contact angle measurement on polymers. Taylor M; Urquhart AJ; Zelzer M; Davies MC; Alexander MR Langmuir; 2007 Jun; 23(13):6875-8. PubMed ID: 17503858 [TBL] [Abstract][Full Text] [Related]
32. Electrically tunable wetting defects characterized by a simple capillary force sensor. 't Mannetje D; Banpurkar A; Koppelman H; Duits MH; van den Ende D; Mugele F Langmuir; 2013 Aug; 29(31):9944-9. PubMed ID: 23883074 [TBL] [Abstract][Full Text] [Related]
33. Microscopic description of a drop on a solid surface. Ruckenstein E; Berim GO Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270 [TBL] [Abstract][Full Text] [Related]
34. The Effect of Slight Deformation on Thermocapillary-Driven Droplet Coalescence and Growth. Rother MA; Davis RH J Colloid Interface Sci; 1999 Jun; 214(2):297-318. PubMed ID: 10339370 [TBL] [Abstract][Full Text] [Related]
35. Thermocapillary Droplet Actuation: Effect of Solid Structure and Wettability. Karapetsas G; Chamakos NT; Papathanasiou AG Langmuir; 2017 Oct; 33(41):10838-10850. PubMed ID: 28937224 [TBL] [Abstract][Full Text] [Related]
37. Enhanced Movement of Two-Component Droplets on a Wedge-Shaped Ag/Cu Surface by a Wettability Gradient. Li Y; Huang J; Cheng J; Xu S; Pi P; Wen X ACS Appl Mater Interfaces; 2021 Apr; 13(13):15857-15865. PubMed ID: 33765767 [TBL] [Abstract][Full Text] [Related]