These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20873751)

  • 1. Phosphatidylinositol 4,5-bisphosphate-induced conformational change of ezrin and formation of ezrin oligomers.
    Carvalho K; Khalifat N; Maniti O; Nicolas C; Arold S; Picart C; Ramos L
    Biochemistry; 2010 Nov; 49(43):9318-27. PubMed ID: 20873751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate.
    Blin G; Margeat E; Carvalho K; Royer CA; Roy C; Picart C
    Biophys J; 2008 Feb; 94(3):1021-33. PubMed ID: 17827228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of moesin and ezrin to membranes containing phosphatidylinositol (4,5) bisphosphate: a comparative study of the affinity constants and conformational changes.
    Maniti O; Khalifat N; Goggia K; Dalonneau F; Guérin C; Blanchoin L; Ramos L; Picart C
    Biochim Biophys Acta; 2012 Nov; 1818(11):2839-49. PubMed ID: 22813867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of an ezrin mutant defective in F-actin binding.
    Saleh HS; Merkel U; Geissler KJ; Sperka T; Sechi A; Breithaupt C; Morrison H
    J Mol Biol; 2009 Jan; 385(4):1015-31. PubMed ID: 19084535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening of holes in liposomal membranes is induced by proteins possessing the FERM domain.
    Takeda S; Saitoh A; Furuta M; Satomi N; Ishino A; Nishida G; Sudo H; Hotani H; Takiguchi K
    J Mol Biol; 2006 Sep; 362(3):403-13. PubMed ID: 16934293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open conformation of ezrin bound to phosphatidylinositol 4,5-bisphosphate and to F-actin revealed by neutron scattering.
    Jayasundar JJ; Ju JH; He L; Liu D; Meilleur F; Zhao J; Callaway DJ; Bu Z
    J Biol Chem; 2012 Oct; 287(44):37119-33. PubMed ID: 22927432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin binding of ezrin is activated by specific recognition of PIP2-functionalized lipid bilayers.
    Janke M; Herrig A; Austermann J; Gerke V; Steinem C; Janshoff A
    Biochemistry; 2008 Mar; 47(12):3762-9. PubMed ID: 18302339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ezrin mutants affecting dimerization and activation.
    Chambers DN; Bretscher A
    Biochemistry; 2005 Mar; 44(10):3926-32. PubMed ID: 15751968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site in the NH(2)-terminal domain of ezrin correlates with its altered cellular distribution.
    Barret C; Roy C; Montcourrier P; Mangeat P; Niggli V
    J Cell Biol; 2000 Nov; 151(5):1067-80. PubMed ID: 11086008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin.
    Fievet BT; Gautreau A; Roy C; Del Maestro L; Mangeat P; Louvard D; Arpin M
    J Cell Biol; 2004 Mar; 164(5):653-9. PubMed ID: 14993232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative adsorption of ezrin on PIP2-containing membranes.
    Herrig A; Janke M; Austermann J; Gerke V; Janshoff A; Steinem C
    Biochemistry; 2006 Oct; 45(43):13025-34. PubMed ID: 17059219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into a single rod-like helix in activated radixin required for membrane-cytoskeletal cross-linking.
    Hoeflich KP; Tsukita S; Hicks L; Kay CM; Tsukita S; Ikura M
    Biochemistry; 2003 Oct; 42(40):11634-41. PubMed ID: 14529273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of F-actin binding capacity of ezrin: synergism of PIP₂ interaction and phosphorylation.
    Bosk S; Braunger JA; Gerke V; Steinem C
    Biophys J; 2011 Apr; 100(7):1708-17. PubMed ID: 21463584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-independent membrane relocalization of ezrin following association with Dbl in vivo.
    Vanni C; Parodi A; Mancini P; Visco V; Ottaviano C; Torrisi MR; Eva A
    Oncogene; 2004 May; 23(23):4098-106. PubMed ID: 15064738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate.
    Bompard G; Martin M; Roy C; Vignon F; Freiss G
    J Cell Sci; 2003 Jun; 116(Pt 12):2519-30. PubMed ID: 12766187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic dissection of the Ezrin FERM/CERMAD interface.
    Jayaraman B; Nicholson LK
    Biochemistry; 2007 Oct; 46(43):12174-89. PubMed ID: 17914868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton.
    Niggli V; Rossy J
    Int J Biochem Cell Biol; 2008; 40(3):344-9. PubMed ID: 17419089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomeric structure of brain abundant proteins GAP-43 and BASP1.
    Zakharov VV; Mosevitsky MI
    J Struct Biol; 2010 Jun; 170(3):470-83. PubMed ID: 20109554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins.
    An X; Zhang X; Debnath G; Baines AJ; Mohandas N
    Biochemistry; 2006 May; 45(18):5725-32. PubMed ID: 16669616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule detection of phosphorylation-induced plasticity changes during ezrin activation.
    Liu D; Ge L; Wang F; Takahashi H; Wang D; Guo Z; Yoshimura SH; Ward T; Ding X; Takeyasu K; Yao X
    FEBS Lett; 2007 Jul; 581(18):3563-71. PubMed ID: 17628548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.