BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20873751)

  • 1. Phosphatidylinositol 4,5-bisphosphate-induced conformational change of ezrin and formation of ezrin oligomers.
    Carvalho K; Khalifat N; Maniti O; Nicolas C; Arold S; Picart C; Ramos L
    Biochemistry; 2010 Nov; 49(43):9318-27. PubMed ID: 20873751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate.
    Blin G; Margeat E; Carvalho K; Royer CA; Roy C; Picart C
    Biophys J; 2008 Feb; 94(3):1021-33. PubMed ID: 17827228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of moesin and ezrin to membranes containing phosphatidylinositol (4,5) bisphosphate: a comparative study of the affinity constants and conformational changes.
    Maniti O; Khalifat N; Goggia K; Dalonneau F; Guérin C; Blanchoin L; Ramos L; Picart C
    Biochim Biophys Acta; 2012 Nov; 1818(11):2839-49. PubMed ID: 22813867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of an ezrin mutant defective in F-actin binding.
    Saleh HS; Merkel U; Geissler KJ; Sperka T; Sechi A; Breithaupt C; Morrison H
    J Mol Biol; 2009 Jan; 385(4):1015-31. PubMed ID: 19084535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening of holes in liposomal membranes is induced by proteins possessing the FERM domain.
    Takeda S; Saitoh A; Furuta M; Satomi N; Ishino A; Nishida G; Sudo H; Hotani H; Takiguchi K
    J Mol Biol; 2006 Sep; 362(3):403-13. PubMed ID: 16934293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open conformation of ezrin bound to phosphatidylinositol 4,5-bisphosphate and to F-actin revealed by neutron scattering.
    Jayasundar JJ; Ju JH; He L; Liu D; Meilleur F; Zhao J; Callaway DJ; Bu Z
    J Biol Chem; 2012 Oct; 287(44):37119-33. PubMed ID: 22927432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin binding of ezrin is activated by specific recognition of PIP2-functionalized lipid bilayers.
    Janke M; Herrig A; Austermann J; Gerke V; Steinem C; Janshoff A
    Biochemistry; 2008 Mar; 47(12):3762-9. PubMed ID: 18302339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ezrin mutants affecting dimerization and activation.
    Chambers DN; Bretscher A
    Biochemistry; 2005 Mar; 44(10):3926-32. PubMed ID: 15751968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site in the NH(2)-terminal domain of ezrin correlates with its altered cellular distribution.
    Barret C; Roy C; Montcourrier P; Mangeat P; Niggli V
    J Cell Biol; 2000 Nov; 151(5):1067-80. PubMed ID: 11086008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin.
    Fievet BT; Gautreau A; Roy C; Del Maestro L; Mangeat P; Louvard D; Arpin M
    J Cell Biol; 2004 Mar; 164(5):653-9. PubMed ID: 14993232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative adsorption of ezrin on PIP2-containing membranes.
    Herrig A; Janke M; Austermann J; Gerke V; Janshoff A; Steinem C
    Biochemistry; 2006 Oct; 45(43):13025-34. PubMed ID: 17059219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into a single rod-like helix in activated radixin required for membrane-cytoskeletal cross-linking.
    Hoeflich KP; Tsukita S; Hicks L; Kay CM; Tsukita S; Ikura M
    Biochemistry; 2003 Oct; 42(40):11634-41. PubMed ID: 14529273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of F-actin binding capacity of ezrin: synergism of PIP₂ interaction and phosphorylation.
    Bosk S; Braunger JA; Gerke V; Steinem C
    Biophys J; 2011 Apr; 100(7):1708-17. PubMed ID: 21463584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-independent membrane relocalization of ezrin following association with Dbl in vivo.
    Vanni C; Parodi A; Mancini P; Visco V; Ottaviano C; Torrisi MR; Eva A
    Oncogene; 2004 May; 23(23):4098-106. PubMed ID: 15064738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate.
    Bompard G; Martin M; Roy C; Vignon F; Freiss G
    J Cell Sci; 2003 Jun; 116(Pt 12):2519-30. PubMed ID: 12766187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic dissection of the Ezrin FERM/CERMAD interface.
    Jayaraman B; Nicholson LK
    Biochemistry; 2007 Oct; 46(43):12174-89. PubMed ID: 17914868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton.
    Niggli V; Rossy J
    Int J Biochem Cell Biol; 2008; 40(3):344-9. PubMed ID: 17419089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomeric structure of brain abundant proteins GAP-43 and BASP1.
    Zakharov VV; Mosevitsky MI
    J Struct Biol; 2010 Jun; 170(3):470-83. PubMed ID: 20109554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins.
    An X; Zhang X; Debnath G; Baines AJ; Mohandas N
    Biochemistry; 2006 May; 45(18):5725-32. PubMed ID: 16669616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule detection of phosphorylation-induced plasticity changes during ezrin activation.
    Liu D; Ge L; Wang F; Takahashi H; Wang D; Guo Z; Yoshimura SH; Ward T; Ding X; Takeyasu K; Yao X
    FEBS Lett; 2007 Jul; 581(18):3563-71. PubMed ID: 17628548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.