These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20873813)

  • 1. CdSe nanorods dominate photocurrent of hybrid CdSe-P3HT photovoltaic cell.
    Schierhorn M; Boettcher SW; Peet JH; Matioli E; Bazan GC; Stucky GD; Moskovits M
    ACS Nano; 2010 Oct; 4(10):6132-6. PubMed ID: 20873813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer.
    Ravirajan P; Peiró AM; Nazeeruddin MK; Graetzel M; Bradley DD; Durrant JR; Nelson J
    J Phys Chem B; 2006 Apr; 110(15):7635-9. PubMed ID: 16610853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding polycarbazole-based polymer:CdSe hybrid solar cells.
    Lek JY; Lam YM; Niziol J; Marzec M
    Nanotechnology; 2012 Aug; 23(31):315401. PubMed ID: 22796943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model.
    Krali E; Curry RJ
    ACS Nano; 2011 Apr; 5(4):3069-78. PubMed ID: 21425859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
    Lee TH; Sue HJ; Cheng X
    Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells.
    Lin YY; Chu TH; Li SS; Chuang CH; Chang CH; Su WF; Chang CP; Chu MW; Chen CW
    J Am Chem Soc; 2009 Mar; 131(10):3644-9. PubMed ID: 19215126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between nanoscale surface potential and power conversion efficiency of P3HT/TiO2 nanorod bulk heterojunction photovoltaic devices.
    Wu MC; Wu YJ; Yen WC; Lo HH; Lin CF; Su WF
    Nanoscale; 2010 Aug; 2(8):1448-54. PubMed ID: 20820733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-induced electron recombination dynamics in CdSe/P3HT hybrid heterojunctions.
    Albero J; Martínez-Ferrero E; Ajuria J; Waldauf C; Pacios R; Palomares E
    Phys Chem Chem Phys; 2009 Nov; 11(42):9644-7. PubMed ID: 19851541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device.
    Zeng TW; Liu S; Hsu FC; Huang KT; Liao HC; Su WF
    Opt Express; 2010 Sep; 18 Suppl 3():A357-65. PubMed ID: 21165066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical performance of CdSe nanorod arrays grown on a transparent conducting substrate.
    Schierhorn M; Boettcher SW; Kraemer S; Stucky GD; Moskovits M
    Nano Lett; 2009 Sep; 9(9):3262-7. PubMed ID: 19705806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoconduction properties in aligned assemblies of colloidal CdSe/CdS nanorods.
    Persano A; De Giorgi M; Fiore A; Cingolani R; Manna L; Cola A; Krahne R
    ACS Nano; 2010 Mar; 4(3):1646-52. PubMed ID: 20184386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.
    Lek JY; Xing G; Sum TC; Lam YM
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):894-902. PubMed ID: 24351093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange.
    Greaney MJ; Das S; Webber DH; Bradforth SE; Brutchey RL
    ACS Nano; 2012 May; 6(5):4222-30. PubMed ID: 22537193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition.
    Salant A; Shalom M; Hod I; Faust A; Zaban A; Banin U
    ACS Nano; 2010 Oct; 4(10):5962-8. PubMed ID: 20866044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid nanorod-polymer solar cells.
    Huynh WU; Dittmer JJ; Alivisatos AP
    Science; 2002 Mar; 295(5564):2425-7. PubMed ID: 11923531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers.
    Sun B; Greenham NC
    Phys Chem Chem Phys; 2006 Aug; 8(30):3557-60. PubMed ID: 16871346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial charge transfer dynamics in CdSe/dipole molecules coated quantum dot polymer blends.
    Albero J; Martínez-Ferrero E; Iacopino D; Vidal-Ferran A; Palomares E
    Phys Chem Chem Phys; 2010 Oct; 12(40):13047-51. PubMed ID: 20820584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics.
    Ham MH; Paulus GL; Lee CY; Song C; Kalantar-zadeh K; Choi W; Han JH; Strano MS
    ACS Nano; 2010 Oct; 4(10):6251-9. PubMed ID: 20886891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite.
    Chen L; Pan X; Zheng D; Gao Y; Jiang X; Xu M; Chen H
    Nanotechnology; 2010 Aug; 21(34):345201. PubMed ID: 20671361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.