These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20873942)

  • 21. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation.
    Kumar S; Udgaonkar JB
    J Mol Biol; 2009 Jan; 385(4):1266-76. PubMed ID: 19063899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid protofibril formation.
    Dovidchenko NV; Finkelstein AV; Galzitskaya OV
    J Phys Chem B; 2014 Feb; 118(5):1189-97. PubMed ID: 24404849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordinate and time-dependent diffusion dynamics in protein folding.
    Oliveira RJ; Whitford PC; Chahine J; Leite VB; Wang J
    Methods; 2010 Sep; 52(1):91-8. PubMed ID: 20438841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro conversion of mammalian prion protein into amyloid fibrils displays unusual features.
    Baskakov IV; Bocharova OV
    Biochemistry; 2005 Feb; 44(7):2339-48. PubMed ID: 15709746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling amyloid fibril formation: a free-energy approach.
    Wolf MG; Gestel Jv; de Leeuw SW
    Methods Mol Biol; 2008; 474():153-79. PubMed ID: 19031066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amyloid gels: precocious appearance of elastic properties during the formation of an insulin fibrillar network.
    Manno M; Giacomazza D; Newman J; Martorana V; San Biagio PL
    Langmuir; 2010 Feb; 26(3):1424-6. PubMed ID: 19916492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coarse-grained models for protein folding and aggregation.
    Derreumaux P
    Methods Mol Biol; 2013; 924():585-600. PubMed ID: 23034764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amyloid fibril formation by human stefins: Structure, mechanism & putative functions.
    Zerovnik E; Staniforth RA; Turk D
    Biochimie; 2010 Nov; 92(11):1597-607. PubMed ID: 20685229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the heterogeneity and specificity of interpolypeptide interactions in amyloid protofibrils by measurement of site-specific fluorescence anisotropy decay kinetics.
    Jha A; Udgaonkar JB; Krishnamoorthy G
    J Mol Biol; 2009 Oct; 393(3):735-52. PubMed ID: 19716830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Configuration-dependent diffusion dynamics of downhill and two-state protein folding.
    Xu W; Lai Z; Oliveira RJ; Leite VB; Wang J
    J Phys Chem B; 2012 May; 116(17):5152-9. PubMed ID: 22497604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape.
    Adamcik J; Mezzenga R
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8370-8382. PubMed ID: 29446868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature.
    Morris AM; Watzky MA; Finke RG
    Biochim Biophys Acta; 2009 Mar; 1794(3):375-97. PubMed ID: 19071235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic Analysis of Amyloid Formation.
    Meisl G; Michaels TCT; Linse S; Knowles TPJ
    Methods Mol Biol; 2018; 1779():181-196. PubMed ID: 29886534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure.
    Sambashivan S; Liu Y; Sawaya MR; Gingery M; Eisenberg D
    Nature; 2005 Sep; 437(7056):266-9. PubMed ID: 16148936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-pressure studies on protein aggregates and amyloid fibrils.
    Kim YS; Randolph TW; Seefeldt MB; Carpenter JF
    Methods Enzymol; 2006; 413():237-53. PubMed ID: 17046400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetically controlled thermal response of beta2-microglobulin amyloid fibrils.
    Sasahara K; Naiki H; Goto Y
    J Mol Biol; 2005 Sep; 352(3):700-11. PubMed ID: 16098535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.