These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20874398)

  • 1. Yeast ancestral genome reconstructions: the possibilities of computational methods II.
    Chauve C; Gavranovic H; Ouangraoua A; Tannier E
    J Comput Biol; 2010 Sep; 17(9):1097-112. PubMed ID: 20874398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guided genome halving: provably optimal solutions provide good insights into the preduplication ancestral genome of Saccharomyces cerevisiae.
    Gavranović H; Tannier E
    Pac Symp Biocomput; 2010; ():21-30. PubMed ID: 19908354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining the semantics of genome super-blocks to infer ancestral architectures.
    Jean G; Sherman DJ; Nikolski M
    J Comput Biol; 2009 Sep; 16(9):1267-84. PubMed ID: 19772437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistically fair comparison of ancestral genome reconstructions, based on breakpoint and rearrangement distances.
    Adam Z; Sankoff D
    J Comput Biol; 2010 Sep; 17(9):1299-314. PubMed ID: 20874410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing ancestral genomic sequences by co-evolution: formal definitions, computational issues, and biological examples.
    Tuller T; Birin H; Kupiec M; Ruppin E
    J Comput Biol; 2010 Sep; 17(9):1327-44. PubMed ID: 20874411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descendants of whole genome duplication within gene order phylogeny.
    Zheng C; Zhu Q; Sankoff D
    J Comput Biol; 2008 Oct; 15(8):947-64. PubMed ID: 18788908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimal conflicting sets for the consecutive ones property in ancestral genome reconstruction.
    Chauve C; Hausd UU; Stephen T; You VP
    J Comput Biol; 2010 Sep; 17(9):1167-81. PubMed ID: 20874402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of ancestral gene orders using intermediate genomes.
    Feijão P
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S3. PubMed ID: 26451811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancestral animal genomes reconstruction.
    Rascol VL; Pontarotti P; Levasseur A
    Curr Opin Immunol; 2007 Oct; 19(5):542-6. PubMed ID: 17702562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes.
    Chauve C; Tannier E
    PLoS Comput Biol; 2008 Nov; 4(11):e1000234. PubMed ID: 19043541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProCARs: Progressive Reconstruction of Ancestral Gene Orders.
    Perrin A; Varré JS; Blanquart S; Ouangraoua A
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S6. PubMed ID: 26040958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi.
    Keogh RS; Seoighe C; Wolfe KH
    Yeast; 1998 Mar; 14(5):443-57. PubMed ID: 9559552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SCJ Small Parsimony Problem for Weighted Gene Adjacencies.
    Luhmann N; Lafond M; Thevenin A; Ouangraoua A; Wittler R; Chauve C
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1364-1373. PubMed ID: 28166504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring ancestral gene order.
    Catchen JM; Conery JS; Postlethwait JH
    Methods Mol Biol; 2008; 452():365-83. PubMed ID: 18566773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancestral Flowering Plant Chromosomes and Gene Orders Based on Generalized Adjacencies and Chromosomal Gene Co-Occurrences.
    Xu Q; Jin L; Zhang Y; Zhang X; Zheng C; Leebens-Mack JH; Sankoff D
    J Comput Biol; 2021 Nov; 28(11):1156-1179. PubMed ID: 34783601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very low rate of gene conversion in the yeast genome.
    Casola C; Conant GC; Hahn MW
    Mol Biol Evol; 2012 Dec; 29(12):3817-26. PubMed ID: 22844073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus.
    Vakirlis N; Sarilar V; Drillon G; Fleiss A; Agier N; Meyniel JP; Blanpain L; Carbone A; Devillers H; Dubois K; Gillet-Markowska A; Graziani S; Huu-Vang N; Poirel M; Reisser C; Schott J; Schacherer J; Lafontaine I; Llorente B; Neuvéglise C; Fischer G
    Genome Res; 2016 Jul; 26(7):918-32. PubMed ID: 27247244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins.
    Stergiopoulos I; Kourmpetis YA; Slot JC; Bakker FT; De Wit PJ; Rokas A
    Mol Biol Evol; 2012 Nov; 29(11):3371-84. PubMed ID: 22628532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary sequence analysis of complete eukaryote genomes.
    Blair JE; Shah P; Hedges SB
    BMC Bioinformatics; 2005 Mar; 6():53. PubMed ID: 15762985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis.
    Yang L; Koo DH; Li D; Zhang T; Jiang J; Luan F; Renner SS; Hénaff E; Sanseverino W; Garcia-Mas J; Casacuberta J; Senalik DA; Simon PW; Chen J; Weng Y
    Plant J; 2014 Jan; 77(1):16-30. PubMed ID: 24127692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.