These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 20874402)
1. Minimal conflicting sets for the consecutive ones property in ancestral genome reconstruction. Chauve C; Hausd UU; Stephen T; You VP J Comput Biol; 2010 Sep; 17(9):1167-81. PubMed ID: 20874402 [TBL] [Abstract][Full Text] [Related]
2. The complexity of the gapped consecutive-ones property problem for matrices of bounded maximum degree. Maňuch J; Patterson M J Comput Biol; 2011 Sep; 18(9):1243-53. PubMed ID: 21899429 [TBL] [Abstract][Full Text] [Related]
3. On the identification of conflicting contiguities in ancestral genome reconstruction. Ouangraoua A; Raffinot M J Comput Biol; 2014 Jan; 21(1):64-79. PubMed ID: 24106802 [TBL] [Abstract][Full Text] [Related]
4. Reconstruction of ancestral genomic sequences using likelihood. Elias I; Tuller T J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016 [TBL] [Abstract][Full Text] [Related]
5. Linearization of ancestral multichromosomal genomes. Maňuch J; Patterson M; Wittler R; Chauve C; Tannier E BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S11. PubMed ID: 23281593 [TBL] [Abstract][Full Text] [Related]
6. The SCJ Small Parsimony Problem for Weighted Gene Adjacencies. Luhmann N; Lafond M; Thevenin A; Ouangraoua A; Wittler R; Chauve C IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1364-1373. PubMed ID: 28166504 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction of ancestral gene orders using intermediate genomes. Feijão P BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S3. PubMed ID: 26451811 [TBL] [Abstract][Full Text] [Related]
8. Reconstructing ancestral genomic sequences by co-evolution: formal definitions, computational issues, and biological examples. Tuller T; Birin H; Kupiec M; Ruppin E J Comput Biol; 2010 Sep; 17(9):1327-44. PubMed ID: 20874411 [TBL] [Abstract][Full Text] [Related]
9. Mining the semantics of genome super-blocks to infer ancestral architectures. Jean G; Sherman DJ; Nikolski M J Comput Biol; 2009 Sep; 16(9):1267-84. PubMed ID: 19772437 [TBL] [Abstract][Full Text] [Related]
10. Yeast ancestral genome reconstructions: the possibilities of computational methods II. Chauve C; Gavranovic H; Ouangraoua A; Tannier E J Comput Biol; 2010 Sep; 17(9):1097-112. PubMed ID: 20874398 [TBL] [Abstract][Full Text] [Related]
11. A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. Chauve C; Tannier E PLoS Comput Biol; 2008 Nov; 4(11):e1000234. PubMed ID: 19043541 [TBL] [Abstract][Full Text] [Related]
12. Pathgroups, a dynamic data structure for genome reconstruction problems. Zheng C Bioinformatics; 2010 Jul; 26(13):1587-94. PubMed ID: 20483815 [TBL] [Abstract][Full Text] [Related]
13. Complexity and Algorithms for Finding a Perfect Phylogeny from Mixed Tumor Samples. Hujdurovic A; Kacar U; Milanic M; Ries B; Tomescu AI IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):96-108. PubMed ID: 28113405 [TBL] [Abstract][Full Text] [Related]
19. A practical algorithm for estimation of the maximum likelihood ancestral reconstruction error. Hickey G; Blanchette M Pac Symp Biocomput; 2010; ():31-42. PubMed ID: 19908355 [TBL] [Abstract][Full Text] [Related]
20. Guided genome halving: provably optimal solutions provide good insights into the preduplication ancestral genome of Saccharomyces cerevisiae. Gavranović H; Tannier E Pac Symp Biocomput; 2010; ():21-30. PubMed ID: 19908354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]