These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 20874404)
1. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions. Xu AW J Comput Biol; 2010 Sep; 17(9):1195-211. PubMed ID: 20874404 [TBL] [Abstract][Full Text] [Related]
2. A fast and exact algorithm for the median of three problem: a graph decomposition approach. Xu AW J Comput Biol; 2009 Oct; 16(10):1369-81. PubMed ID: 19747038 [TBL] [Abstract][Full Text] [Related]
3. SCJ: a breakpoint-like distance that simplifies several rearrangement problems. Feijão P; Meidanis J IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1318-29. PubMed ID: 21339538 [TBL] [Abstract][Full Text] [Related]
4. Multichromosomal median and halving problems under different genomic distances. Tannier E; Zheng C; Sankoff D BMC Bioinformatics; 2009 Apr; 10():120. PubMed ID: 19386099 [TBL] [Abstract][Full Text] [Related]
6. On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance. Feijão P; Martinez F; Thévenin A BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S1. PubMed ID: 26695008 [TBL] [Abstract][Full Text] [Related]
7. Computation of perfect DCJ rearrangement scenarios with linear and circular chromosomes. Bérard S; Chateau A; Chauve C; Paul C; Tannier E J Comput Biol; 2009 Oct; 16(10):1287-309. PubMed ID: 19803733 [TBL] [Abstract][Full Text] [Related]
8. Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes. Alekseyev MA J Comput Biol; 2008 Oct; 15(8):1117-31. PubMed ID: 18788907 [TBL] [Abstract][Full Text] [Related]
9. Algorithms for sorting unsigned linear genomes by the DCJ operations. Jiang H; Zhu B; Zhu D Bioinformatics; 2011 Feb; 27(3):311-6. PubMed ID: 21134895 [TBL] [Abstract][Full Text] [Related]
10. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes. Bhatia S; Egri-Nagy A; Francis AR J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846 [TBL] [Abstract][Full Text] [Related]
11. Extending the algebraic formalism for genome rearrangements to include linear chromosomes. Feijão P; Meidanis J IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378 [TBL] [Abstract][Full Text] [Related]
12. The solution space of sorting by DCJ. Braga MD; Stoye J J Comput Biol; 2010 Sep; 17(9):1145-65. PubMed ID: 20874401 [TBL] [Abstract][Full Text] [Related]
13. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes. Shao M; Lin Y; Moret BM J Comput Biol; 2015 May; 22(5):425-35. PubMed ID: 25517208 [TBL] [Abstract][Full Text] [Related]
14. A fast method for large-scale multichromosomal breakpoint median problems. Boyd S; Haghighi M J Bioinform Comput Biol; 2012 Feb; 10(1):1240008. PubMed ID: 22809309 [TBL] [Abstract][Full Text] [Related]
15. Median Approximations for Genomes Modeled as Matrices. Zanetti JPP; Biller P; Meidanis J Bull Math Biol; 2016 Apr; 78(4):786-814. PubMed ID: 27072561 [TBL] [Abstract][Full Text] [Related]
16. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming. Lyubetsky V; Gershgorin R; Gorbunov K BMC Bioinformatics; 2017 Dec; 18(1):537. PubMed ID: 29212445 [TBL] [Abstract][Full Text] [Related]
17. Sorting Linear Genomes with Rearrangements and Indels. Braga MD; Stoye J IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):500-6. PubMed ID: 26357261 [TBL] [Abstract][Full Text] [Related]
18. On the rank-distance median of 3 permutations. Chindelevitch L; Pereira Zanetti JP; Meidanis J BMC Bioinformatics; 2018 May; 19(Suppl 6):142. PubMed ID: 29745865 [TBL] [Abstract][Full Text] [Related]
19. An approximation algorithm for the minimum breakpoint linearization problem. Chen X; Cui Y IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):401-9. PubMed ID: 19644168 [TBL] [Abstract][Full Text] [Related]
20. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions. Bader M; Abouelhoda MI; Ohlebusch E BMC Bioinformatics; 2008 Dec; 9():516. PubMed ID: 19055792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]