BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 20874849)

  • 21. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males.
    Folk DG; Zwollo P; Rand DM; Gilchrist GW
    J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Latitudinal and cold-tolerance variation associate with DNA repeat-number variation in the hsr-omega RNA gene of Drosophila melanogaster.
    Collinge JE; Anderson AR; Weeks AR; Johnson TK; McKechnie SW
    Heredity (Edinb); 2008 Sep; 101(3):260-70. PubMed ID: 18560441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A rapid shift in a classic clinal pattern in Drosophila reflecting climate change.
    Umina PA; Weeks AR; Kearney MR; McKechnie SW; Hoffmann AA
    Science; 2005 Apr; 308(5722):691-3. PubMed ID: 15860627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20 years in Australian Drosophila melanogaster populations.
    Anderson AR; Hoffmann AA; McKechnie SW; Umina PA; Weeks AR
    Mol Ecol; 2005 Mar; 14(3):851-8. PubMed ID: 15723676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-eclosion decline in 'knock-down' thermal resistance and reduced effect of heat hardening in Drosophila melanogaster.
    Pappas C; Hyde D; Bowler K; Loeschcke V; Sørensen JG
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):355-9. PubMed ID: 17208027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climatic adaptation of Drosophila buzzatii populations in southeast Australia.
    Sarup P; Sørensen JG; Dimitrov K; Barker JS; Loeschcke V
    Heredity (Edinb); 2006 Jun; 96(6):479-86. PubMed ID: 16622471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altitudinal patterns for latitudinally varying traits and polymorphic markers in Drosophila melanogaster from eastern Australia.
    Collinge JE; Hoffmann AA; McKechnie SW
    J Evol Biol; 2006 Mar; 19(2):473-82. PubMed ID: 16599923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline.
    Rako L; Blacket MJ; McKechnie SW; Hoffmann AA
    Mol Ecol; 2007 Jul; 16(14):2948-57. PubMed ID: 17614909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster.
    Schmidt PS; Paaby AB
    Evolution; 2008 May; 62(5):1204-15. PubMed ID: 18298646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster.
    Schmidt PS; Matzkin L; Ippolito M; Eanes WF
    Evolution; 2005 Aug; 59(8):1721-32. PubMed ID: 16331839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymorphism in the couch potato gene clines in eastern Australia but is not associated with ovarian dormancy in Drosophila melanogaster.
    Lee SF; Sgrò CM; Shirriffs J; Wee CW; Rako L; van Heerwaarden B; Hoffmann AA
    Mol Ecol; 2011 Jul; 20(14):2973-84. PubMed ID: 21689187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster.
    Lockwood BL; Gupta T; Scavotto R
    J Evol Biol; 2018 Feb; 31(2):323-331. PubMed ID: 29284184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster.
    Andersen LH; Kristensen TN; Loeschcke V; Toft S; Mayntz D
    J Insect Physiol; 2010 Apr; 56(4):336-40. PubMed ID: 19931279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster.
    Overgaard J; Sørensen JG
    Cryobiology; 2008 Apr; 56(2):159-62. PubMed ID: 18295194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations.
    David JR; Araripe LO; Chakir M; Legout H; Lemos B; Pétavy G; Rohmer C; Joly D; Moreteau B
    J Evol Biol; 2005 Jul; 18(4):838-46. PubMed ID: 16033555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection.
    Yang Y; Edery I
    PLoS Genet; 2018 Sep; 14(9):e1007612. PubMed ID: 30180162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecologically relevant measures of tolerance to potentially lethal temperatures.
    Terblanche JS; Hoffmann AA; Mitchell KA; Rako L; le Roux PC; Chown SL
    J Exp Biol; 2011 Nov; 214(Pt 22):3713-25. PubMed ID: 22031735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical thermal maxima in knockdown-selected Drosophila: are thermal endpoints correlated?
    Folk DG; Hoekstra LA; Gilchrist GW
    J Exp Biol; 2007 Aug; 210(Pt 15):2649-56. PubMed ID: 17644679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.