These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20875095)

  • 1. Asymmetric microarray data produces gene lists highly predictive of research literature on multiple cancer types.
    Dawany NB; Tozeren A
    BMC Bioinformatics; 2010 Sep; 11():483. PubMed ID: 20875095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving gene set analysis of microarray data by SAM-GS.
    Dinu I; Potter JD; Mueller T; Liu Q; Adewale AJ; Jhangri GS; Einecke G; Famulski KS; Halloran P; Yasui Y
    BMC Bioinformatics; 2007 Jul; 8():242. PubMed ID: 17612399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining published lists of cancer related microarray experiments: identification of a gene expression signature having a critical role in cell-cycle control.
    Finocchiaro G; Mancuso F; Muller H
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S14. PubMed ID: 16351740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray data simulator for improved selection of differentially expressed genes.
    Singhal S; Kyvernitis CG; Johnson SW; Kaiser LR; Liebman MN; Albelda SM
    Cancer Biol Ther; 2003; 2(4):383-91. PubMed ID: 14508110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust gene selection methods using weighting schemes for microarray data analysis.
    Kang S; Song J
    BMC Bioinformatics; 2017 Sep; 18(1):389. PubMed ID: 28865426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microarrays for cancer diagnosis and classification.
    Perez-Diez A; Morgun A; Shulzhenko N
    Adv Exp Med Biol; 2007; 593():74-85. PubMed ID: 17265718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses.
    Dozmorov MG; Wren JD
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S2. PubMed ID: 22166002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale integration of microarray data reveals genes and pathways common to multiple cancer types.
    Dawany NB; Dampier WN; Tozeren A
    Int J Cancer; 2011 Jun; 128(12):2881-91. PubMed ID: 21165954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimension reduction and mixed-effects model for microarray meta-analysis of cancer.
    Yu T; Ye H; Chen Z; Ziober BL; Zhou X
    Front Biosci; 2008 Jan; 13():2714-20. PubMed ID: 17981746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group testing for pathway analysis improves comparability of different microarray datasets.
    Manoli T; Gretz N; Gröne HJ; Kenzelmann M; Eils R; Brors B
    Bioinformatics; 2006 Oct; 22(20):2500-6. PubMed ID: 16895928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of gene-set analysis methods.
    Liu Q; Dinu I; Adewale AJ; Potter JD; Yasui Y
    BMC Bioinformatics; 2007 Nov; 8():431. PubMed ID: 17988400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene set enrichment meta-learning analysis: next- generation sequencing versus microarrays.
    Stiglic G; Bajgot M; Kokol P
    BMC Bioinformatics; 2010 Apr; 11():176. PubMed ID: 20377890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity analysis of gene ranking methods in phenotype prediction.
    deAndrés-Galiana EJ; Fernández-Martínez JL; Sonis ST
    J Biomed Inform; 2016 Dec; 64():255-264. PubMed ID: 27793724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.
    Tong DL; Schierz AC
    Artif Intell Med; 2011 Sep; 53(1):47-56. PubMed ID: 21775110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAID : an effect size based model for microarray data integration across laboratories and platforms.
    Borozan I; Chen L; Paeper B; Heathcote JE; Edwards AM; Katze M; Zhang Z; McGilvray ID
    BMC Bioinformatics; 2008 Jul; 9():305. PubMed ID: 18616827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparison of statistical methods for detecting differential expression in microarray data].
    Shan WJ; Tong CF; Shi JS
    Yi Chuan; 2008 Dec; 30(12):1640-6. PubMed ID: 19073583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the concordance of Gene Ontology terms reveals the intra- and inter-platform reproducibility of enrichment analysis.
    Zhang L; Zhang J; Yang G; Wu D; Jiang L; Wen Z; Li M
    BMC Bioinformatics; 2013 Apr; 14():143. PubMed ID: 23627640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interval based fuzzy systems for identification of important genes from microarray gene expression data: Application to carcinogenic development.
    De RK; Ghosh A
    J Biomed Inform; 2009 Dec; 42(6):1022-8. PubMed ID: 19591962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New gene selection method for classification of cancer subtypes considering within-class variation.
    Cho JH; Lee D; Park JH; Lee IB
    FEBS Lett; 2003 Sep; 551(1-3):3-7. PubMed ID: 12965195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays.
    Wang Y; Barbacioru C; Hyland F; Xiao W; Hunkapiller KL; Blake J; Chan F; Gonzalez C; Zhang L; Samaha RR
    BMC Genomics; 2006 Mar; 7():59. PubMed ID: 16551369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.