BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20875560)

  • 1. Thermodynamic and kinetic study of the single extraction of mercury from soil using sodium-thiosulfate.
    Issaro N; Besancon S; Bermond A
    Talanta; 2010 Oct; 82(5):1659-67. PubMed ID: 20875560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting soil-water partition coefficients for Hg(II) from soil properties.
    Lee SZ; Chang L; Chen CM; Tsai YI; Liu MC
    Water Sci Technol; 2001; 43(2):187-96. PubMed ID: 11380179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method.
    Liu G; Cabrera J; Allen M; Cai Y
    Sci Total Environ; 2006 Oct; 369(1-3):384-92. PubMed ID: 16904164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].
    Qu J; Yuan X; Cong Q; Wang S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2674-8. PubMed ID: 19271516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.
    Neculita CM; Zagury GJ; Deschênes L
    J Environ Qual; 2005; 34(1):255-62. PubMed ID: 15647556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a two-stage biotransformation system for mercury-contaminated soil remediation.
    Chen SC; Lin WH; Chien CC; Tsang DCW; Kao CM
    Chemosphere; 2018 Jun; 200():266-273. PubMed ID: 29494907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal mercury (Hg) distribution in soil samples by sedimentation field-flow fractionation coupled to mercury cold vapour generation atomic absorption spectroscopy.
    Santoro A; Terzano R; Medici L; Beciani M; Pagnoni A; Blo G
    J Environ Monit; 2012 Jan; 14(1):138-45. PubMed ID: 22089540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total mercury, organic mercury and mercury fractionation in soil profiles from the Almadén mercury mine area.
    Fernández-Martínez R; Rucandio I
    Environ Sci Process Impacts; 2014 Feb; 16(2):333-40. PubMed ID: 24441501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of natural purified humic acids in modifying mercury accessibility in water and soil.
    Cattani I; Zhang H; Beone GM; Del Re AA; Boccelli R; Trevisan M
    J Environ Qual; 2009; 38(2):493-501. PubMed ID: 19202019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total copper content and its distribution in acid vineyards soils developed from granitic rocks.
    Nóvoa-Muñoz JC; Queijeiro JM; Blanco-Ward D; Alvarez-Olleros C; Martínez-Cortizas A; García-Rodeja E
    Sci Total Environ; 2007 May; 378(1-2):23-7. PubMed ID: 17287013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of weathering and organic matter on heavy metals lability in silicatic, Alpine soils.
    Egli M; Sartori G; Mirabella A; Giaccai D; Favilli F; Scherrer D; Krebs R; Delbos E
    Sci Total Environ; 2010 Jan; 408(4):931-46. PubMed ID: 19879634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation, distribution, and transport of mercury in contaminated soils from Descoberto, Minas Gerais, Brazil.
    Durão Júnior WA; Palmieri HE; Trindade MC; de Aquino Branco OE; Filho CA; Fleming PM; da Silva JB; Windmöller CC
    J Environ Monit; 2009 May; 11(5):1056-63. PubMed ID: 19436865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of fulvic substances on the distribution and migration of Hg in landfill leachate.
    Xiaoli C; Guixiang L; Jun W; Huanhuan T; Rong J; Youcai Z
    J Environ Monit; 2011 May; 13(5):1464-9. PubMed ID: 21468428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D; Horvat M; Kotnik J
    J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil).
    do Valle CM; Santana GP; Augusti R; Egreja Filho FB; Windmöller CC
    Chemosphere; 2005 Feb; 58(6):779-92. PubMed ID: 15621191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films.
    Cattani I; Spalla S; Beone GM; Del Re AA; Boccelli R; Trevisan M
    Talanta; 2008 Feb; 74(5):1520-6. PubMed ID: 18371812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination and assessment of mercury content in calcareous soils.
    Gil C; Ramos-Miras J; Roca-Pérez L; Boluda R
    Chemosphere; 2010 Jan; 78(4):409-15. PubMed ID: 20004461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification and speciation of mercury in soils from the Tripuí Ecological Station, Minas Gerais, Brazil.
    Palmieri HE; Nalini HA; Leonel LV; Windmöller CC; Santos RC; de Brito W
    Sci Total Environ; 2006 Sep; 368(1):69-78. PubMed ID: 16376971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil.
    Liu T; Wang J; Feng X; Zhang H; Zhu Z; Cheng S
    Sci Total Environ; 2019 Mar; 657():938-944. PubMed ID: 30677959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.